网站大量收购闲置独家精品文档,联系QQ:2885784924

KL变换和主成分分析-1.ppt

  1. 1、本文档共54页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
5.2 主成分分析 主成分分析PCA Principle Component Analysis 通过K-L变换实现主成分分析 PCA的变换矩阵是协方差矩阵,K-L变换的变换矩阵可以有很多种(二阶矩阵、协方差矩阵、总类内离散度矩阵等等)。当K-L变换矩阵为协方差矩阵时,等同于PCA。 K-L变换特征提取思想 用映射(或变换)的方法把原始特征变换为较少的新特征 降维 主成分分析(PCA)基本思想 进行特征降维变换,不能完全地表示原有的对象,能量总会有损失。 希望找到一种能量最为集中的的变换方法使损失最小 内 容 一、前 言 二、问题的提出 三、主成分分析 1. 二维数据的例子 2. PCA的几何意义 3. 均值和协方差、 特征值和特征向量 4. PCA的性质 四、主成分分析的算法 五、具体实例 六、 结论 1. 前 言 假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。 如果让你介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗? 当然不能 你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。 PCA 多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性. 在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法是可以实现的. 主成分分析原理: 是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 主成分分析方法就是综合处理这种问题的一种强有力的方法。 2. 问题的提出 (1) 如何作主成分分析? 当分析中所选择的变量具有不同的量纲,变量水平差异很大,应该选择基于相关系数矩阵的主成分分析。 (2) 如何选择几个主成分。 主成分分析的目的是简化变量,一般情况下主成分的个数应该小于原始变量的个数。关于保留几个主成分,应该权衡主成分个数和保留的信息。 (3)如何解释主成分所包含的几何意义或经济意义或其它。 实例1: 经济分析 美国的统计学家斯通(Stone)在1947年关于国民经济的研究是一项十分著名的工作。他曾利用美国1929一1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息、外贸平衡等等。 根据经济学知识,斯通给这三个新变量分别命名为总收入F1、总收入变化率F2和经济发展或衰退的趋势F3。更有意思的是,这三个变量其实都是可以直接测量的。 主成分分析就是试图在力保数据信息丢失最少的原则下,对这种多变量的数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。 很显然,识辨系统在一个低维空间要比在一个高维空间容易得多。 实例2: 成绩数据 100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。 从本例可能提出的问题 目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢? 这一两个综合变量包含有多少原来的信息呢? 能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。 先假定数据只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值; 如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的). 椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。 但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭圆的长短轴平行。 如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。 椭圆(球)的长短轴相差得越大,降维也越有道理。 进一步解释PCA(续) 对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地看见罢了。 首先把高维椭球的主轴找出来,再用代表大多数数据信息的最长的几个轴作为新

文档评论(0)

wendan118 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档