人工神经网络算法..doc

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
人工神经网络算法.

/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 杂谈? ??? 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 ????机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 ??? 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 ??? 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果YQ,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. ??? 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就不要要求这么高了,不要说电脑,就是人类也无能为力,你的一个好朋友你经过多次的识记肯定认识吧,但是他整了容你们在大街上邂逅.你可能觉得这个人声音好熟悉,体形好熟悉,----都像自己一个朋友,就是脸长的不像.你不敢贸然上去搭讪吧(否定的判断).因为我们判定一个人是否是自己的朋友的时候依靠的关键的特征就是面部特征,而他恰恰就是改变了这一特征.当然也存在我们把一个拥有和我们朋友足够多相似特征的人判定为我们的朋友,这就是认错人的现象了.这些问题电脑也会出现. 不过这个算法还是有比较积极的意义的,实现了一定程度上的智能化. ? 下面是这种方法的理论解释: ? 人工神经网路 学习是要透过我们的头脑,因而研究大脑神经细胞的运作,可以帮助我们了 解学习在脑神经是如何完成的,进而可以模拟神经细胞的运作以达到類似学习的 功能。据估计人脑约有一千亿(1011)个神经细胞,每个神经细胞约有一千(103) 根連结与其它神经细胞相連,因此人脑中约有一百万亿(1014)根連结,形成一 个高度連结网狀的神经网路(neural network)。科学家们相信:人脑的信息处理工作即是透过这些連结來完成的 [葉怡成1993]。 神经细胞的形狀与一般的细胞有很大的不同,它包括:细胞体(soma):神经 细胞中呈核狀的处理机构;轴突(axon):神经细胞中呈轴索狀的输送机构;树狀 突(dendrites):神经细胞中呈树枝狀的输出入机构;与突触(synapse):树狀突上呈点狀的連结机构。根据神经学家的研究发现:当神经细胞透过神经突触与树 狀突从其它神经元输入脉波讯号后,经过细胞体处理,产生一个新的脉

文档评论(0)

gangshou + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档