功率谱密度..doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
功率谱密度.

t=0:0.0001:0.1; %时间间隔为0.0001,说明采样频率为10000Hz x=square(2*pi*1000*t); %产生基频为1000Hz的方波信号 n=randn(size(t)); %白噪声 f=x+n; %在信号中加入白噪声 figure(1); subplot(2,1,1); plot(f); %画出原始信号的波形图 ylabel(幅值(V)); xlabel(时间(s)); title(原始信号); y=fft(f,1000); %对原始信号进行离散傅里叶变换,参加DFT采样点的个数为1000 subplot(2,1,2); m=abs(y); f1=(0:length(y)/2-1)*10000/length(y);%计算变换后不同点对应的幅值 plot(f1,m(1:length(y)/2)); ylabel(幅值的模); xlabel(时间(s)); title(原始信号傅里叶变换); %用周期图法估计功率谱密度 p=y.*conj(y)/1000; %计算功率谱密度 ff=10000*(0:499)/1000; %计算变换后不同点对应的频率值 figure(2); plot(ff,p(1:500)); ylabel(幅值); xlabel(频率(Hz)); title(功率谱密度(周期图法)); 功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。在这里,结合matlab,我做一个粗略介绍。功率谱估计可以分为经典谱估计方法与现代谱估计方法。经典谱估计中最简单的就是周期图法,又分为直接法与间接法。直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。在matlab中,周期图法可以用函数periodogram实现。   但是周期图法估计出的功率谱不够精细,分辨率比较低。因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。 这2种称为分段平均周期图法,一般后者比前者效果好。加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT等技术来计算功率谱。与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。   现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。可以分为参数模型谱估计和非参数模型谱估计。参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。由于涉及的问题太多,这里不再详述,可以参考有关资料。 matlab中,现代谱估计的很多方法都可以实现。music方法用pmusic命令实现;pburg函数利用burg法实现功率谱估计;pyulear函数利用yule-walker算法实现功率谱估计等等。   另外,sptool工具箱也具有功率谱估计的功能。窗口化的操作界面很方便,而且有多种方法可以选择。 经典功率谱估计? 直接法: 直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1/Fs:1; %产生含有噪声的序列 xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗 nfft=1024; [Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法 plot(f,10*log10(Pxx)); 间接法: 间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。 Matlab代码示例: clear; Fs=1000; %采样频率 n=0:1

文档评论(0)

wuyuetian + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档