人工神经网络在机械故障诊断中的应用.docx

人工神经网络在机械故障诊断中的应用.docx

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
人工神经网络在机械故障诊断中的应用

人工神经网络在机械故障诊断中的应用摘要:针对传统的机械故障诊断方法的局限性,提出将人工神经网络应用于机械故障诊断中。由于BP算法存在收敛速度慢及易陷入局部极小等缺陷,利用实数编码改进遗传算法对神经网络的权值和阈值进行优化训练,并把训练好的神经网络用于机械振动信号预测及机械故障诊断中。通过对机械设备振动信号的预测,可以及早发现故障,及时消除故障隐患,为企业节省大量的维修时间和维修费用,提高企业的生产率。关键词:遗传算法; 神经网络; 机械故障诊断The Application of Artificial Neural Networksin the Mechanical Fault DiagnosisAbstract:: For the limitations of traditional methods in the mechanical fault diagnosis, it is proposed in this paper that the artificial neural network is used in the mechanical fault diagnosis. Because BP algorithm has the defects of slow convergence rate and easy trapping in local minimum, a real- coded improved genetic algorithms is proposed to train the weights and threshold of neural network, and the trained neural network is applied in the prediction for the mechanical vibration signals and the mechanical fault diagnosis. By the prediction for the mechanical fault diagnosis, it can detect the faults and eliminate hidden trouble earlier, and it can save a lot of maintenance time and maintenance costs for enterprises and improve productivity for enterprises.Key words: Gene tic Algorithms; Neural Network; Mechanical Fault Diagnosis0前言随着科学技术的发展, 现代化机械设备的工作强度不断增大,生产效率、自动化程度也越来越高,设备更加复杂的同时,各部分的关联也愈加紧密,某处微小故障可能会导致整台设备甚至与设备有关的环境遭受灾难性的毁坏。近年来,设备预防维修制度正逐步向设备预知维修制度过渡,与设备预防维修制度相比,预知维修制度以振动监测和故障诊断技术为基础,可以做到及早发现故障并消除故障隐患,防止故障的进一步发展,能预防和减少恶性事故的发生,保障人身和设备安全;可以节省设备维修时间,增加设备运行时间,节约维修资金,进而提高企业的生产率与经济效益。传统的诊断方法和诊断理论对单过程、单故障和渐发性故障的简单系统可以发挥较好的作用,但对于多过程、多故障和突发性故障以及复杂庞大、高度自动化的大型设备和系统就具有很大的局限性。将人工智能的理论和方法应用于机械故障诊断,发展智能化的机械故障诊断技术,是机械故障诊断的一个新途径。其中,人工神经网络具有容错、联想、推测、记忆、自适应、自学习和处理复杂多模式的功能,在对非线性时间序列的预测中有一定通用性。振动是机械设备在运行过程中(正常运行与异常运行)所表现出来的一种信息,通过对机器主要部位的振动值如位移、速度、加速度、转速及相位值等进行测定,与标准值进行比较,就可宏观地评定机器的运行状况。然后对测得的振动量进行特征分析,确定故障的性质,最后进一步进行分析就可以确定故障的原因及部位[1] 。利用人工神经网络对机械振动信号进行预测,将预测结果作为检验设备是否发生故障的依据,也是对设备进行机械故障诊断的重要依据。目前,人工神经网络已逐步应用到机械故障诊断领域,并成为机械故障诊断领域的一个研究热点。1人工神经网络概述1.1人工神经网络的原理人工神经网络(Artificial Neural Network,简称ANN)是生物神经网络(Biological Neural Networks,简称BNN)的模型化,并不是简单的BNN模型,而是对结构及功能大大简化后保留其主要特性的抽象与模

文档评论(0)

kaiss + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档