- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
图像复原方法综述
1、摘要
图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、
2、图像复原概述
在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。其中一个成功例子是NASA的喷气推进实验室在1964年用计算机处理有关月球的照片。照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。
早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。
目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。
3、图像退化模型
图像复原问题的有效性关键之一取决于描述图像退化过程模型的精确性。要建立图像的退化模型,则首先必须了解、分析图像退化的机理并用数学模型表现出来。在实际的图像处理过程中,图像均需以数字离散函数表示,所以必须将退化模型离散化[3]。
对于退化图像:
(1)
如果上式中,,,按相同间隔采样,产生相应的阵列、、、,然后将这些阵列补零增广得到大小为的周期延拓阵列,为了避免重叠误差,这里,。由此,当k=0,1,L,M-1;l=0,1,L,N-1时,即可得到二维离散退化模型形式:
(2)
如果用矩阵表示上式,则可写为:
(3)
其中,,,为一个行堆叠形成的列向量,H为阶的块循环矩阵。
现实中造成图像降质的种类很多,常见的图像退化模型及点扩展函数有如下情景[15]:
(1) 线性移动降质
在拍照时,成像系统与目标之间有相对直线移动会造成图像的降质。水平方向线性移动可以用以下降质函数来描述:
(4)
式中,d是降质函数的长度。在应用中如果线性移动降质函数不在水平方向,则可类似地定义移动降质函数。
(2) 散焦降质
文档评论(0)