支持向量机matlab实现源码支持向量机matlab实现源代码.doc

支持向量机matlab实现源码支持向量机matlab实现源代码.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
支持向量机matlab实现源码支持向量机matlab实现源代码

edit svmtrain edit svmclassify edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,KERNEL_FUNCTION,KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % linear Linear kernel or dot product % quadratic Quadratic kernel % polynomial Polynomial kernel (default order 3) % rbf Gaussian Radial Basis Function kernel % mlp Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @, % for example @KFUN, or an anonymous function % % A kernel function must be of the form % % function K = KFUN(U, V) % % The returned value, K, is a matrix of size M-by-N, where U and V have M % and N rows respectively. If KFUN is parameterized, you can use % anonymous functions to capture the problem-dependent parameters. For % example, suppose that your kernel function is % % function k = kfun(u,v,p1,p2) % k = tanh(p1*(u*v)+p2); % % You can set values for p1 and p2 and then use an anonymous function: % @(u,v) kfun(u,v,p1,p2). % % SVMTRAIN(...,POLYORDER,ORDER) allows you to specify the order of a % polynomial kernel. The de

您可能关注的文档

文档评论(0)

cduutang + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档