拉格朗日对偶..doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
拉格朗日对偶.

2 拉格朗日对偶(Lagrange duality) ???? 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: ???????? ??? 目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 ???????? ??? L是等式约束的个数。 ??? 然后分别对w和求偏导,使得偏导数等于0,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》) 然后我们探讨有不等式约束的极值问题求法,问题如下: ???????? ??? 我们定义一般化的拉格朗日公式 ??? 这里的和都是拉格朗日算子。如果按这个公式求解,会出现问题,因为我们求解的是最小值,而这里的已经不是0了,我们可以将调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数: ???? ??? 这里的P代表primal。假设或者,那么我们总是可以调整和来使得有最大值为正无穷。而只有g和h满足约束时,为f(w)。这个函数的精妙之处在于,而且求极大值。 ??? 因此我们可以写作 ???? ??? 这样我们原来要求的min f(w)可以转换成求了。 ??? ???? ??? 我们使用来表示。如果直接求解,首先面对的是两个参数,而也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢? ??? 我们先考虑另外一个问题 ??? D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将和看作是固定值。之后在求最大值的话: ??? 这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换顺序的结果是Max Min(X) = MinMax(X)。然而在这里两者相等。用来表示对偶问题如下: ???? ??? 下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine,)。并且存在w使得对于所有的i,。在这种假设下,一定存在使得是原问题的解,是对偶问题的解。还有另外,满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),该条件如下: ???? ??? 所以如果满足了库恩-塔克条件,那么他们就是原问题和对偶问题的解。让我们再次审视公式(5),这个条件称作是KKT dual complementarity条件。这个条件隐含了如果,那么。也就是说,时,w处于可行域的边界上,这时才是起作用的约束。而其他位于可行域内部(的)点都是不起作用的约束,其。这个KKT双重补足条件会用来解释支持向量和SMO的收敛测试。 ??? 这部分内容思路比较凌乱,还需要先研究下《非线性规划》中的约束极值问题,再回头看看。KKT的总体思想是将极值会在可行域边界上取得,也就是不等式为0或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。 最优间隔分类器(optimal margin classifier) ??? 重新回到SVM的优化问题: ???? ??? 我们将约束条件改写为: ???? ??? 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,因此前面的系数.注意每一个约束式实际就是一个训练样本。 ??? 看下面的图: ??? 实线是最大间隔超平面,假设×号的是正例,圆圈的是负例。在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是。这三个点称作支持向量。构造拉格朗日函数如下: ??? ???? ??? 注意到这里只有没有是因为原问题中没有等式约束,只有不等式约束。 ??? 下面我们按照对偶问题的求解步骤来一步步进行, ???? ??? 首先求解的最小值,对于固定的,的最小值只与w和b有关。对w和b分别求偏导数。 ???? ???? ??? 并得到 ???? ??? 将上式带回到拉格朗日函数中得到,此时得到的是该函数的最小值(目标函数是凸函数) ??? 代入后,化简过程如下: ?????   最后得到 ???? 由于最后一项是0,因此简化为 ???? ??? 这里我们将向量内积表示为 ??? 此时的拉格朗日函数只包含了变量。然而我们求出了才能得到w和b。 ??? 接着是极大化的过程, ??? 前面提到过对偶问题和原问题满足的几个条件,首先由于目标

您可能关注的文档

文档评论(0)

wuyuetian + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档