- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
PID校正PID校正
PID校正装置(又称PID控制器或PID调节器)是一种有源校正装置,它是最早发展起来的控制策略之一,在工业过程控制中有着最广泛的应用,其实现方式有电气式、气动式和液力式。与无源校正装置相比,它具有结构简单、参数易于整定、应用面广等特点,设计的控制对象可以有精确模型,并可以是黑箱或灰箱系统。总体而言,它主要有如下优点:
(1)原理简单,应用方便,参数整定灵活。
(2)适用性强。可以广泛应用于电力、机械、化工、热工、冶金、轻工、建材、石油等行业。
(3)鲁棒性强。即其控制的质量对受控对象的变化不太敏感,这是它获广泛应用的最重要的一原因。因为在实际的受控对象,例如由于受外界的扰动时,尤其是外界负荷发生变化时,受控对象特性会发生很大变化,为得到良好的控制品质,必须经常改变控制器的参数,这在实际操作上是非常麻烦的;又如,由于环境的变化或设备的老化,受控对象模型的结构或参数均会发生一些不可知的变化,为保证控制质量,就应对控制器进行重新设计,这在有些过程中是不允许的。因此,如果控制器鲁棒性强,则就无须经常改变控制器的参数或结构。
目前,基于PID控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols算法和它的精调算法、预测PID算法、最优PID算法、控制PID算法、增益裕量/相位裕量PID设计、极点配置PID算法、鲁棒PID等。本节主要介绍PID控制器的基本工作原理及几个典型设计方法。
6.5.1 PID控制器工作原理
图6-26 典型PID电原理图如图6-11(b)中的有源迟后-超前校正装置,图6—26 则为它的控制结构框图。
由图6—26可见,PID控制器是通加对误差信号e(t)进行比例、积分和微分运算,其结果的加权,得到控制器的输出u(t),该值就是控制对象的控制值。PID控制器的数学描述为:
(6-36)
式中u(t)为控制输入,e(t)=r(t)-c(t)为误差信号,γ(t)为输入量,c(t)为输出量。
下面对PID中常用的比例P、比例-积分PI、比例-微分PD和比例-积分-微分PID四种调节器作一简要分析,从而对比例、微分和积分作用有一个初步的认识。
(一)比例调节器—比例的作用
比例调节器的传递函数Gc(S)=Kp,u(t)=Kp·e(t),即在PID控制器中使Ti→∞,Td→0 。
根据前面所学,为了提高系统的静态性能指标,减少系统的静态误差,一个可行的办法是提高系统的稳态误差系数,即增加系统的开环增益。显然,若使Kp增大,可满足上述要求。然而,只有当Kp→∞ ,系统的输出才能跟踪输入,而这必将破坏系统的动态性能和稳定性。
以一个三阶系统为例。
一单位反馈系统的开环传递函数为: ,其根轨迹如图6—27,当 时,系统将产生振荡。同时从图6—28闭环响应曲线也可以发现,当 增大时,系统稳态输出增大,系统响应速度和超调量也增大, 时,系统产生等幅振荡,已不稳定。可见,单纯采用 来改善系统的性能指标是不合适的。
图6-27
图6-28 Prog6-5-1:
g=tf(1,[1,3,3,1]);p=[1:1:8];
for i=1:length(p)
g_c=feedback(p(i)*g,1);
step(g_c); hold on;
end
?figure; rlocus(g); axis(square);
?K=rlocfind(g)
Select a point in the graphics window
selected_point =
0 + 1.7427i
K = 8.1112
(二)比例积分调节器—积分的作用
在PID调节器中,当Td→0 时,控制输出u(t)与e(t)具有如下关系:
(6-37)
首先,通过比较比例调节器和比例积分调节器可以发现,为使e(t)→0,在比例调节器中Kp→∞,这样若|e(t)| 存在较大的扰动,则输出u(t)也很大,这不仅会影响系统的动态性能,也使执行器频繁处于大幅振动中;而若采用PI调节器,如果要求e(t)→0,则控制器输出u(t)由∫e(t)dt/Ti 得到一个常值,从而使输出c(t)稳定于期望的值。其次,从参数调节个数来看,比例调节器仅可调节一个参数Kp,而PI调节器则允许调节参数Kp 和Ti ,这样调节灵活,也较容易得到理想的动、静态性能指标。
但是,因Gc(Sd)=Kp(Tis+1/Tis) ,PI调节器归根到底是一个迟后环节。根据前面介绍的迟后校正原理,在根轨迹法设计中,为避免相位迟后对系统造成的负面影响,零点-1/Ti靠近原点,即Ti足够大;在频域法设计中,也要求转折频率(1/Ti)ωc且远离 ωc。这表明在考虑系统稳定性时,Ti应足够大。然而,若Ti太大,则PI调节器中的积分作用变小,
文档评论(0)