网站大量收购独家精品文档,联系QQ:2885784924

大数据数据挖掘培训讲义5:分类算法基础.ppt

大数据数据挖掘培训讲义5:分类算法基础.ppt

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大数据数据挖掘培训讲义5:分类算法基础

witten eibe Algorithms for Classification: The Basic Methods Outline Simplicity first: 1R Na?ve Bayes Classification Task: Given a set of pre-classified examples, build a model or classifier to classify new cases. Supervised learning: classes are known for the examples used to build the classifier. A classifier can be a set of rules, a decision tree, a neural network, etc. Typical applications: credit approval, direct marketing, fraud detection, medical diagnosis, ….. Simplicity first Simple algorithms often work very well! There are many kinds of simple structure, eg: One attribute does all the work All attributes contribute equally independently A weighted linear combination might do Instance-based: use a few prototypes Use simple logical rules Success of method depends on the domain Inferring rudimentary rules 1R: learns a 1-level decision tree I.e., rules that all test one particular attribute Basic version One branch for each value Each branch assigns most frequent class Error rate: proportion of instances that don’t belong to the majority class of their corresponding branch Choose attribute with lowest error rate (assumes nominal attributes) Pseudo-code for 1R Note: “missing” is treated as a separate attribute value Evaluating the weather attributes * indicates a tie Dealing with numeric attributes Discretize numeric attributes Divide each attribute’s range into intervals Sort instances according to attribute’s values Place breakpoints where the class changes (the majority class) This minimizes the total error Example: temperature from weather data The problem of overfitting This procedure is very sensitive to noise One instance with an incorrect class label will probably produce a separate interval Also: time stamp attribute will have zero errors Simple solution: enforce minimum number of instances in majority class per interval Discretization example Example (with min = 3): Final result for temperature attribute With overfitting avoidance Resulti

文档评论(0)

3124904050 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档