- 1、本文档共40页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
大数据数据挖掘培训讲义7-回归和knn算法
Classification Algorithms – Continued Outline Rules Linear Models (Regression) Instance-based (Nearest-neighbor) Generating Rules Decision tree can be converted into a rule set Straightforward conversion: each path to the leaf becomes a rule – makes an overly complex rule set More effective conversions are not trivial (e.g. C4.8 tests each node in root-leaf path to see if it can be eliminated without loss in accuracy) Covering algorithms Strategy for generating a rule set directly: for each class in turn find rule set that covers all instances in it (excluding instances not in the class) This approach is called a covering approach because at each stage a rule is identified that covers some of the instances Example: generating a rule Example: generating a rule, II Example: generating a rule, III Example: generating a rule, IV Possible rule set for class “b”: More rules could be added for “perfect” rule set Rules vs. trees Corresponding decision tree: (produces exactly the same predictions) But: rule sets can be more clear when decision trees suffer from replicated subtrees Also: in multi-class situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account A simple covering algorithm Generates a rule by adding tests that maximize rule’s accuracy Similar to situation in decision trees: problem of selecting an attribute to split on But: decision tree inducer maximizes overall purity Each new test reduces rule’s coverage: Selecting a test Goal: maximize accuracy t total number of instances covered by rule p positive examples of the class covered by rule t – p number of errors made by rule Select test that maximizes the ratio p/t We are finished when p/t = 1 or the set of instances can’t be split any further Example: contact lens data, 1 Rule we seek: Possible tests: Example: contact lens data, 2 Rule we seek: Possible tests: Modified rule and resulting data Rule with best test added: Instances
您可能关注的文档
最近下载
- F1600泥浆泵组使用说明书.doc VIP
- 会计师事务所-项目风险评估管理办法模版.docx VIP
- DeepSeek人工智能大模型赋能数字医疗健康解决方案.ppt VIP
- modbus通讯协议rtu开发手册rs485rs.pdf VIP
- 胆总管结石诊疗指南(2023版).pptx VIP
- 黄姜皂素直接分离法清洁生产新工艺检测报告.doc VIP
- 力帆 2019款 V16 摩托车 用户说明书 保养手册.pdf
- 秸秆还田机设计 机械设计制造及自动化专业毕业设计 毕业设计论文.doc VIP
- 《GBT 45396-2025 数据安全技术 政务数据处理安全要求》知识培训.pptx
- 水和水蒸气热力性质表.pdf VIP
文档评论(0)