网站大量收购独家精品文档,联系QQ:2885784924

大数据数据挖掘培训讲义-关联规则.ppt

  1. 1、本文档共30页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大数据数据挖掘培训讲义-关联规则

Association Rules and Frequent Item Analysis Outline Transactions Frequent itemsets Subset Property Association rules Applications Transactions Example Transaction database: Example, 1 Transaction database: Example, 2 Definitions Item: attribute=value pair or simply value usually attributes are converted to binary flags for each value, e.g. product=“A” is written as “A” Itemset I : a subset of possible items Example: I = {A,B,E} (order unimportant) Transaction: (TID, itemset) TID is transaction ID Support and Frequent Itemsets Support of an itemset sup(I ) = no. of transactions t that support (i.e. contain) I In example database: sup ({A,B,E}) = 2, sup ({B,C}) = 4 Frequent itemset I is one with at least the minimum support count sup(I ) = minsup SUBSET PROPERTY Every subset of a frequent set is frequent! Q: Why is it so? A: Example: Suppose {A,B} is frequent. Since each occurrence of A,B includes both A and B, then both A and B must also be frequent Similar argument for larger itemsets Almost all association rule algorithms are based on this subset property Association Rules Association rule R : Itemset1 = Itemset2 Itemset1, 2 are disjoint and Itemset2 is non-empty meaning: if transaction includes Itemset1 then it also has Itemset2 Examples A,B = E,C A = B,C From Frequent Itemsets to Association Rules Q: Given frequent set {A,B,E}, what are possible association rules? A = B, E A, B = E A, E = B B = A, E B, E = A E = A, B __ = A,B,E (empty rule), or true = A,B,E Classification vs Association Rules Classification Rules Focus on one target field Specify class in all cases Measures: Accuracy Association Rules Many target fields Applicable in some cases Measures: Support, Confidence, Lift Rule Support and Confidence Suppose R : I = J is an association rule sup (R) = sup (I ? J) is the support count support of itemset I ? J (I or J) conf (R) = sup(J) / sup(R) is the confidence of R fraction of transactions with I ? J that have J Association ru

您可能关注的文档

文档评论(0)

3124904050 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档