- 1、本文档共42页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
大银行与大数据的战略思考
大银行与大数据的战略思考(首席经济学家黄志凌)大数据时代已经悄然来临。大数据用来描述规模巨大、类型复杂的数据集合,被誉为是继云计算、物联网之后,IT产业又一次颠覆性技术变革,引起各方高度关注。2011年,著名咨询公司麦肯锡宣布“大数据”时代已经到来;近年来,IBM、甲骨文、SAP等业界巨头纷纷收购与大数据有关公司,加速布局大数据领域;2012年,达沃斯论坛报告《大数据,大影响》称大数据像货币和黄金一样,成为新的经济资产;2012年,奥巴马政府宣布投资2亿美元启动“大数据研究和发展计划”,旨在增强对海量数据的搜集和分析萃取能力。现代银行相对于传统银行最大的差别(或者说最大进步)在于数据的深度利用。在现代IT技术之下,数据对银行来说已经超越了账务信息等传统的涵义,成为现代银行经营的宝贵资源。现代银行特别是大型银行的经营管理活动,很大部分表现为基于计算机技术的数据管理和运用,其中最核心的工作是数据挖掘,即从海量数据中找出隐含于其中的有价值信息,支持或指导经营决策。随着外部资本监管日趋严格、同业竞争日趋激烈、客户行为日益敏感、盈利能力不断下降,越来越多的商业银行开始运营大数据方法驱动经营模式转型,并深度服务客户选择与风险管理、产品设计与精准营销、资源配置与结构调整,终于出现“数据驱动型银行”,表现为从客户的选择到产品的设计、再到内部的管理,都是由数据驱动,由数据支撑决策。银行从大数据思维,到数据驱动型经营,需具备以下特点:第一,要养成一切靠数据说话的思维习惯,这是数据驱动型银行的基础;第二,要有庞大的专业、高效的数据挖掘知识体系;第三,要有积极广泛的数据应用,这些数据应用要更多地体现在风险识别与预警,市场的拓展与产品设计,以及绩效考核与资源配置;第四,要实现真正意义上的精细化管理,彻底扭转客户、市场、盈利等方面的粗放型管理方式;第五,要认识到数据是最重要的经营资产,是持续创利的资产,是没有天花板的盈利资产,银行竞争力与盈利能力主要取决于数据积累和数据挖掘,而且有可能呈几何级增长。目前,第三方支付机构拥有的海量数据资产已经对商业银行形成挑战,未来比金融脱媒更令人担心的可能是客户数据脱媒和信息脱媒,最终导致客户流失、服务能力降低。对大银行而言,建立大数据能力已经成为保持竞争优势的必然选择。一、大数据已成为大银行的战略性资产和核心竞争力银行长远的发展战略,是培养自己的核心竞争力。什么是核心竞争力?有人说是IT,有人说是人才,有人说是客户,总而言之,各有各的理解。所谓的“核心竞争力”,关键的要素叫做“不可复制”、“不可替代”。产品是可以被复制的,客户是经常有流动的,这都难以成为我们的核心竞争力,而大数据能力由于其特有的性质将逐渐成为银行真正的核心竞争力。大数据首先是建立在银行自己的数据基础上,不是数据多少的问题,而是你我的数据不同,在不同数据基础上做出的模型是不可复制的。马云,马化腾,还有马明哲,这三个中国互联网的领军人物,他们有合作,但是彼此之间都无法复制,就是因为他们在各自不同的数据基础上,建立起来的竞争力是无法复制、不可替代的。第二,我们在自身数据基础上培养出来的人才,也是无法复制的核心竞争力,这些数据分析专家在我们的数据环境下成长起来,别家银行的数据环境跟我们完全不一样,他就没有用武之地,这就是特有的人才。大数据是大银行解决面临问题的重要着力点大型商业银行正面临很多严峻的挑战和问题,例如利润增速下滑、资产质量降低、市场地位受到挑战、传统产品增长空间受到限制等,尤其是随着中国经济增长进入“新常态”、银行进入股改红利后时期,传统上靠扩大规模就可以维持快速增长的时期已经过去了。银行转型首先解决的是寻找新的利润增长点,从发达国家银行发展经验看,通过深入挖掘分析客户真实需求、提供更有针对性的服务,就可以大幅提高盈利水平,这是体现数据挖掘价值最直接地方。比如花旗银行亚太地区,近年来有25%的利润来自于数据挖掘;汇丰银行通过数据挖掘开展交叉销售,使客户贷款产品响应率提高了5倍;澳洲联邦银行运用大数据分析来提供个性化的交叉销售,成功将交叉销售率从9%提高到60% ;VISA把发现信用卡欺诈的时间从1个月缩短到13分钟,极大地降低了信用卡欺诈带来的风险;另外,数据挖掘在客户挽留、客户细分等领域都有效果非常好的应用。这还是在他们原有数据分析水平就较高的基础上,国内商业银行数据挖掘分析水平本来较低,这方面的工作将会产生更大的效果,相比于传统上跑马圈地、扩张规模的做法,可以起到事半功倍的作用。进入移动互联时代后,“跨界”成为普遍特征,互联网企业利用平台优势和数据优势不断入侵其它行业,银行业也受到了很大冲击,我们在转型中必须要思考未来银行业务模式到底是什么。实际上,在生意比较好做的时候,很多事情我们不愿意做,失去了很多商机,我们有上亿的个人客户,这些客户在购买
文档评论(0)