- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
机器学习与数据挖掘
周 志 华
南京大学计算机软件新技术国家重点实验室,南京210093
“机器学习”是人工智能的核心研究领域之一, 其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。
“数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
因为机器学习和数据挖掘有密切的联系,受主编之邀,本文把它们放在一起做一个粗浅的介绍。
1 无处不在
随着计算机技术的飞速发展,人类收集数据、存储数据的能力得到了极大的提高,无论是科学研究还是社会生活的各个领域中都积累了大量的数据,对这些数据进行分析以发掘数据中蕴含的有用信息,成为几乎所有领域的共同需求。正是在这样的大趋势下,机器学习和数据挖掘技术的作用日渐重要,受到了广泛的关注。
例如,网络安全是计算机界的一个热门研究领域,特别是在入侵检测方面,不仅有很多理论成果,还出现了不少实用系统。那么,人们如何进行入侵检测呢?首先,人们可以通过检查服务器日志等手段来收集大量的网络访问数据,这些数据中不仅包含正常访问模式还包含入侵模式。然后,人们就可以利用这些数据建立一个可以很好地把正常访问模式和入侵模式分开的模型。这样,在今后接收到一个新的访问模式时,就可以利用这个模型来判断这个模式是正常模式还是入侵模式,甚至判断出具体是何种类型的入侵。显然,这里的关键问题是如何利用以往的网络访问数据来建立可以对今后的访问模式进行分类的模型,而这正是机器学习
和数据挖掘技术的强项。
实际上,机器学习和数据挖掘技术已经开始在多媒体、计算机图形学、计算机网络乃至操作系统、软件工程等计算机科学的众多领域中发挥作用,特别是在计算机视觉和自然语言处理领域,机器学习和数据挖掘已经成为最流行、最热门的技术,以至于在这些领域的顶级会议上相当多的论文都与机器学习和数据挖掘技术有关。总的来看,引入机器学习和数据挖掘技术在计算机科学的众多分支领域中都是一个重要趋势。
机器学习和数据挖掘技术还是很多交叉学科的重要支撑技术。例如,生物信息学是一个新兴的交叉学科,它试图利用信息科学技术来研究从DNA到基因、基因表达、蛋白质、基因电路、细胞、生理表现等一系列环节上的现象和规律。随着人类基因组计划的实施,以及基因药物的美好前景,生物信息学得到了蓬勃发展。实际上,从信息科学技术的角度来看,生物信息学的研究是一个从“数据”到“发现”的过程,这中间包括数据获取、数据管理、数据分析、仿真实验等环节,而“数据分析”这个环节正是机器学习和数据挖掘技术的舞台。
正因为机器学习和数据挖掘技术的进展对计算机科学乃至整个科学技术领域都有重要意义,美国NASA-JPL实验室的科学家2001年9月在《Science》上专门撰文[3]指出,机器学习对科学研究的整个过程正起到越来越大的支持作用,并认为该领域将稳定而快速地发展,并将对科学技术的发展发挥更大的促进作用。NASA-JPL实验室的全名是美国航空航天局喷气推进实验室,位于加州理工学院,是美国尖端技术的一个重要基地,著名的“勇气”号和“机遇”号火星机器人正是在这个实验室完成的。从目前公开的信息来看,机器学习和数据挖掘技术在这两个火星机器人上有大量的应用。
除了在科学研究中发挥重要作用,机器学习和数据挖掘技术和普通人的生活也息息相关。例如,在天气预报、地震预警、环境污染检测等方面,有效地利用机器学习和数据挖掘技术对卫星传递回来的大量数据进行分析,是提高预报、预警、检测准确性的重要途径;在商业营销中,对利用条形码技术获得的销售数据进行分析,不仅可以帮助商家优化进货、库存,还可以对用户行为进行分析以设计有针对性的营销策略;……。下面再举两个例子。
公路交通事故是人类面临的最大杀手之一,全世界每年有上百万人丧生车轮,仅我国每年就有约10万人死于车祸。美国一直在对自动驾驶车辆进行研究,因为自动驾驶车辆不仅在军事上有重要意义,还对减少因酒后、疲劳而引起的车祸有重要作用。2004年3月,在美国DARPA(国防部先进研究计划局)组织的自动驾驶车辆竞赛中,斯坦福大学
您可能关注的文档
最近下载
- (必会)人身险销售从业人员近年考试真题题库汇总(答案).docx
- 大队委竞选讲话稿PPT.pptx
- 毕业论文_-——汽车凸轮轴加工工艺分析.doc
- 国家安全概论-西安交通大学-中国大学MOOC慕课答案.pdf
- 2024年中国成人心肌炎临床诊断与治疗指南解读课件PPT.pptx
- 2024-2025学年小学信息技术(信息科技)四年级全一册义务教育版(2024)教学设计合集.docx
- 项目四 任务六 旅游娱乐(练习-解析版)-《旅游概论》 (高教社第二版)同步精品课堂.docx
- 第四届-全国大学生结构设计信息技术大赛竞赛题-20211206.docx
- 慢性阻塞性肺疾病患者健康服务规范(试行)培训课件.pptx
- 《全国医疗服务价格项目规范(2012年版)》规范目录.pdf
文档评论(0)