- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Topic-SentimentMixture:ModelingFacetsand.
Topic-Sentiment Mixture: Modeling Facets and Opinions in Weblogs Qiaozhu Mei?, Xu Ling?, Matthew Wondra?, Hang Su?, and ChengXiang Zhai? Why Opinion Analysis? Customers: need peer opinions to make purchase decisions Business providers: need customers’ opinions to improve product need to track opinions to make marketing decisions Social researchers: want to know people’s reactions about social events Government: wants to know people’s reactions to a new policy Psychology, education, etc. An Illustrative Example Why Extracting Opinions from Blogs? Easy to collect: huge amount, clean format Broadly distributed: demographics Topic diversified: free discussion about any topic/product/event Opinion rich: highly personalized Evidence from Blog Search Existing Blog-opinion Analysis Work Opinmind: sentiment classification/search of blogs Existing Blog-opinion Analysis Work (Cont.) What’s Missing Here? Discussions are faceted E.g. iPod: battery? Price? Nano? … Usually different opinions on different facets Opinions have polarities Positive, negative, and neutral … Non-discriminative analysis may lead to wrong decision Opinions are changing over time … Our Goal Model the mixture of facets and opinions (topics and sentiments) Generate a faceted opinion summarization for ad hoc query Track the change of opinions over time Challenges in Opinion Analysis from Blogs Topics and sentiments are mixed together No existing facet structure for ad hoc topics Difficult to identify sentiment polarities Difficult to associate sentiment polarities with facets Difficult to segment topics and sentiments Tracking sentiment dynamics Our Approach: Modeling Topic-Sentiment Mixture Use language models to represent facets and sentiments Facets represented with topic models, extracted in an unsupervised/semi-supervised way Sentiment models extracted in a supervised way Model the mixture of topics and sentiments with a probabilistic generative model Segment associated topics and sentiments with
您可能关注的文档
- School of International Trade and Economics, Guangdong ....ppt
- 电子零售业:产品和服务Retailing in Electronic Commerce Products and Services.ppt
- Scitation全文电子期刊平台使用指南模板.ppt
- SDM242Scrum:介绍必威体育精装版的快捷软件研发过程演示文稿.ppt
- SCI收录号查询方法介绍上海大学情报研究所模板.ppt
- sect;3 函数平方逼近PPT.ppt
- sect;42 力的功middot;用线积分表示功PPT.ppt
- sect;5 曲线拟合的最小二乘法PPT.ppt
- sect;5- 1 基本概念sect;5- 2 静力法作影响线sect;5- 3 机动法作影响线sect;5- PPT.ppt
- SEG2教育领导行动小组..ppt
文档评论(0)