归一化全面总结.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
归一化全面总结归一化全面总结

信号处理工具箱中经常使用的是nyquist频率,它被定义为采样频率的一半,在滤波器的阶数选择和设计中的截止频率均使用nyquist频率进行归一化处理。例如对于一个采样频率为1000hz的系统,400hz的归一化频率就为400/500=0.8。归一化频率范围在[0,1]之间。如果将归一化频率转换为角频率,则将归一化频率乘以2*pi;如果将归一化频率转换为hz,则将归一化频率乘以采样频率的一半。我在网上下载一个BP网络的教案,里面举了个例子,但是上面的数据归一化我没有看明白。原始数据如下: 月份 1 2 3 4 5 6 销量 2056 2395 2600 2298 1634 1600 月份 7 8 9 10 11 12 销量 1873 1478 1900 1500 2046 1556 然后他就得出了: %以每三个月的销售量经归一化处理后作为输入 P=[0.5152 0.8173 1.0000 ; 0.8173 1.0000 0.7308; 1.0000 0.7308 0.1390; 0.7308 0.1390 0.1087; 0.1390 0.1087 0.3520; 0.1087 0.3520 0.0000;]; 请问他是怎么归一化出这些数据的?谢谢 了,归一化前P应为 P1=[2056 2395 2600; 2395 2600 2298; 2600 2298 1634; 2298 1634 1600; 1634 1600 1873; 1600 1873 1478]‘; 取P1 中最大元素和最小元素分别为Pmax=2600,Pmin=1478, 则归一化后P的对应元素值为P=(P1-Pmin)/(Pmax-Pmin)。 用zscore,标准化的目的是:使得平均值为0,标准差为1,这样可以使不同量纲的数据放在一个矩阵. A=magic(4) A = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1 [Z,MU,SIGMA] = zscore(A) Z = 1.3770 -1.2509 -1.0585 0.8262 -0.6426 0.4811 0.2887 -0.0918 0.0918 -0.2887 -0.4811 0.6426 -0.8262 1.0585 1.2509 -1.3770 MU = 8.5000 8.5000 8.5000 8.5000 SIGMA = 5.4467 5.1962 5.1962 5.4467 mean(Z) ans = 1.0e-016 * -0.2776 0 0 0.5551 std(Z) ans = 1.0000 1.0000 1.0000 1.0000 4、关于神经网络(matlab)归一化的整理 关于神经网络归一化方法的整理 由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james) 1、线性函数转换,表达式如下: y=(x-MinValue)/(MaxValue-MinValue) 说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。 2、对数函数转换,表达式如下: y=log10(x) 说明:以10为底的对数函数转换。 3、反余切函数转换,表达式如下: y=atan(x)*2/PI 归一化是为了加快训练网络的收敛性,可以不进行归一化处理 归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布; 当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。 归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节

文档评论(0)

pkaokqunw + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档