- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
损失函数(0-1)损失函数(0-1)
Definition
Formally, we begin by considering some family of distributions for a random variable X, that is indexed by some θ.
More intuitively, we can think of X as our data, perhaps , where i.i.d. The X is the set of things the decision rule will be making decisions on. There exists some number of possible ways to model our data X, which our decision function can use to make decisions. For a finite number of models, we can thus think of θ as the index to this family of probability models. For an infinite family of models, it is a set of parameters to the family of distributions.
On a more practical note, it is important to understand that, while it is tempting to think of loss functions as necessarily parametric (since they seem to take θ as a parameter), the fact that θ is non-finite-dimensional is completely incompatible with this notion; for example, if the family of probability functions is uncountably infinite, θ indexes an uncountably infinite space.
From here, given a set A of possible actions, a decision rule is a function δ?:?→?A.
A loss function is a real lower-bounded function L on Θ?×?A for some θ ∈ Θ. The value L(θ,?δ(X)) is the cost of action δ(X) under parameter θ.[1]
[edit] Decision rules
A decision rule makes a choice using an optimality criterion. Some commonly used criteria are:
Minimax: Choose the decision rule with the lowest worst loss — that is, minimize the worst-case (maximum possible) loss:
Invariance: Choose the optimal decision rule which satisfies an invariance requirement.
Choose the decision rule with the lowest average loss (i.e. minimize the expected value of the loss function):
[edit] Expected loss
The value of the loss function itself is a random quantity because it depends on the outcome of a random variable X. Both frequentist and Bayesian statistical theory involve making a decision based on the expected value of the loss function: however this quantity is defined differently under the two paradigms.
[edit] Frequentist risk
文档评论(0)