第六章采用中、大规模集成电路的逻辑设计..ppt

第六章采用中、大规模集成电路的逻辑设计..ppt

  1. 1、本文档共90页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第六章采用中、大规模集成电路的逻辑设计.

74LS138的引脚图如下: . F1(A,B,C,D)=∑m(0,1,5,7,10,13,15) F2(A,B,C,D)=∑m(8,10,12,13,15) 作F1 F2的卡诺图(以A= A1 B= A0) . . . 比较双4路数据选择器的功能表和输出表达式: A1 A0 1W 2W 0 0 1D0 2D0 0 1 1D1 2D1 1 0 1D2 2D2 1 1 1D3 2D3 可得: . 例 : 74LS193四位二进制同步可异计数器. . Cr LD D C B A CPU CPD QD QC QB QA 1 d d d d d d d 0 0 0 0 0 0 D C B A d d D C B A 0 1 d d d d 1 加计数 0 1 d d d d 1 减计数 例1 : 用74LS193利用反馈归零法构成十进制加法计数器 0000 0001 0010 0011 0100 1010 1001 1000 0111 0110 0101 例2 : 用74LS193利用预置数法构成模12减法计数器 . 例3 : 利用两片74LS193构成模147加法计数器. 例4 : 利用两片74LS193构成模147减法计数器. 例 : 用74LS194构成模4计数器。 6.7 (1) 掩模型ROM 由厂家根据用户要求对芯片写入信息,通过掩模工艺在规定的位置制作晶体管(此位为“ 1 ”),不作晶体管(此位为“ 0 ”).用户不能改动. (2) 可编程ROM(PROM) 存储的内容可由用户写入,写“ 0 ”时,烧断晶体管基极的熔丝,写“ 1 ”时保留熔丝.但编程后不能再改变. (3) 可多次编程ROM(EPROM) EPROM在用户编程后还允许用紫外光擦除数据重新编程.EPROM一旦编程后,在使用时只能读出信息而不能写入信息. . 若A1 A0=01, 则W1为“ 1 ”使三极管V0、 V2 、V3导通而V1截止. 使F0、F2、F3为“ 1 ” ,F1输出为“ 0 ”. 从逻辑电路的角度出发,字线和位线之间构成逻辑“ 或 ”的关系.故: . 根据地址译码器的功能可以写出字线的表达式为: . . 将逻辑图画成阵列图: 6.8 可编程逻辑阵列 PLA和ROM相比即采用函数最简“ 与或 ”式中的“ 与 ”项来构成“ 与 ”阵列.这样与阵列不再产生2n个最小项,而是产生简化后的与项.这样,一个存储单元就可被多个地址码选中,从而达到节省储存空间的目的. . . . 用PLA实现时,先将函数式化简.注意公共项的利用. . . . 例2 : 试用PLA和触发器设计一个6进制加法计数器. . Q3 Q2 Q1 Q3n+1 Q2n+1 Q1n+1 Z 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0

文档评论(0)

叮当文档 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档