第四章 多重共线性和 虚拟变量的应用PPT.ppt

第四章 多重共线性和 虚拟变量的应用PPT.ppt

  1. 1、本文档共56页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第四章 多重共线性和 虚拟变量的应用 本章要点 多重共线性的含义 多重共线性产生的原因 多重共线性的后果 判断多重共线性的方法及其修正方法 虚拟变量的设置原则 虚拟变量模型的应用 邹氏检验的做法及缺陷 虚拟变量法检验结构稳定性的优点 多重共线性的概念 多重共线性(multicollinearity)一词最早由挪威经济学家弗瑞希(R.Frisch)于1934年提出。 其原义是指回归模型中的一些或全部解释变量中存在的一种完全(perfect)或准确(exact)的线性关系。而现在所说的多重共线性,除指上述提到的完全多重共线性(perfect multicollinearity ),也包括近似多重共线性(near multicollinearity)。 为对上述两概念加以区别,我们以一组解释变量 为例 如果存在一组不完全为零的常数 满足 ,即任一变量都可以由其它变量的线性组合推出,则这组变量满足完全多重共线性。 若变量组 , 满足如下关系式 ,其中u表示随机误差项,即某一变量不仅取决于其它变量的线性组合,也取决于随机误差项,此时变量组之间存在非严格但近似的线性关系,解释变量之间高度相关,也即变量组存在近似多重共线性关系。 多重共线性产生的原因 多重共线性问题在金融数据中是普遍存在的,不仅存在于时间序列数据中,也存在于横截面数据中。具体而言,多重共线性产生的原因主要有以下几点: (1)数据收集及计算方法。 (2)模型或从中取样的总体受到限制。 (3)模型设定偏误。 此外,在观测值个数较少,以至于小于解释变量个数时,也会产生多重共线性;时间序列数据中,若同时使用解释变量的当期值和滞后值,由于当期值和滞后值之间往往高度相关,也容易产生多重共线性。 多重共线性的后果 多重共线性不会改变最小二乘估计的无偏性,但在解释变量之间存在严重的多重共线性而被忽略时,会对模型的估计、检验与预测产生严重的不良后果。以某一离差形式(即 )表示的二元线性回归模型 为例 若存在完全多重共线性,假设存在关系 常数 。则 的估计值 同理 也是无法确定的,即不能求得参数估计值。 而对于参数估计值的方差,有 同理, 的方差也是无限大的。因此,当存在完全多重共线性时,我们将不能求得参数估计值,参数估计值的方差无限大。 当存在近似多重共线性时,尽管可以求得参数估计值,但它们是不稳定的,同时参数估计值的方差将变大,变大的程度取决于多重共线性的严重程度。 在实际金融数据中,完全多重共线性只是一种极端情况,各种解释变量之间存在的往往是近似多重共线性,因此通常所说多重共线性造成的后果是指近似多重共线性造成的后果,具体而言,它将造成如下的后果: (1)回归方程参数估计值将变得不精确,因为 较大的方差将会导致置信区间变宽。 (2)由于参数估计值的标准差变大,t值将缩小,使得t检验有可能得出错误的结论 。 (3)将无法区分单个变量对被解释变量的影响作用。 多重共线性的检验 如前所述,多重共线性普遍存在于金融、经济数据中,因此对多重共线性的检验并不是要确定其是否存在,而是要确定多重共线性的程度。 由于多重共线性是对被假定为非随机变量的解释变量的情况而言的,所以它是一种样本而非总体特征,这决定了我们只能以某些经验法则(rules of thumb)来检验模型的多重共线性。 对多重共线性的检验主要包括以下内容: (1)检验多重共线性问题是否严重 (2)多重共线性的存在范围,即确定多重共线性 是由哪些主要变量引起的。 (3)多重共线性的表现形式,即找出与主要变量 有共线性的解释变量。 检验多重共线性问题是否严重 若回归模型的 值高(如 0.8),或F检验值显著,但单个解释变量系数估计值却不显著;或从金融理论知某个解释变量对因变量有重要影响,但其估计值却不显著,则可以认为存在严重的多重共线性问题。 若两个解释变量之间的相关系数高,比如说大于0.8,则可以认为存在严重的多重共线性。 判断多重共线性的存在范围 要确定多重共线性是由哪些主要变量引起的,可以采用辅助回

文档评论(0)

叮当文档 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档