桥梁下部设计及上部施工应注意的一些问题.docVIP

桥梁下部设计及上部施工应注意的一些问题.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
桥梁下部设计及上部施工应注意的一些问题.doc

桥梁下部设计及上部施工应注意的一些问题   摘 要:桥梁下部设计直接关系到桥梁施工质量和工程造价,更涉及到桥梁的安全性。而国内多起桥梁的突然破坏与倒塌,均因上部结构施工质量未达到规范和设计要求所造成。本文结合相关规范和笔者大量工作实践,就桥梁下部设计和上部施工中的一些问题进行初步探讨。   关键词:桥梁下部设计;设计参考值;上部施工   中图分类号:U445文献标识码: A 文章编号:   一、桩基设计   1、正确区分端承桩和摩擦桩等桩基类型   通常误认为,凡嵌岩桩必为端承桩,凡端承桩均不考虑土层侧阻力。实际上,大量现场结果表明:桩侧阻力、端阻力的发挥性状与上覆土层的性质和厚度、桩长径比、嵌入基岩性质和嵌岩深径比、桩底沉渣厚度等因素有关。   一般情况下,上覆土层的侧阻力是可以发挥的,而且随着长径比l/d 的增大,侧阻力也相应增大;只有短粗的人工挖孔嵌岩桩,端阻力先于土层侧阻力发挥,端阻力对桩的承载力起主要作用,属端承桩。对l/d15-20 的泥浆护壁钻(冲)孔嵌岩桩,无论是嵌入风化岩还是完整基岩中,桩侧阻力均先于端阻力发挥,表现出明显的摩擦型。对于l/d≥40,且覆盖土层不属于软弱土,嵌岩桩端的承载。作用较小,此时桩基受力状态为摩擦桩,桩端嵌入强风化或中风化岩层中即可。   在某些地区,泥质软岩嵌岩灌注桩l/d45 时,嵌岩段总阻力占总荷载比例小于20%;l/d60 时,嵌岩段端阻力占总荷载比例小于5%。究其原因,一方面由于嵌岩桩桩身的弹性压缩,导致桩顶沉降,这个弹性压缩量引发了桩周土体的剪应力,也即是土对桩的摩阻力。另一方面,钻孔桩的孔底残留的沉渣,形成一个可压缩的软垫,至使桩底也会产生沉降,这一沉降和上述桩本身的压缩导致桩身与土体、嵌岩段桩身与岩体产生相对位移,从而产生侧阻力。而这种桩身弹性压缩和桩底沉降是随着长径比l/d 的增大而增大的,因而导致摩擦力和侧阻力的增大。   同时,传递到桩端的应力也随嵌岩深径比hr/d 的增大而减小。当hr/d5时传递到桩端的应力接近于零;但对泥质软岩嵌岩桩,hr/d=5-7 时,桩端阻力仍可占总荷载的5%~16%。   由此可见,端承桩和摩擦桩的区分,不能单纯从是否嵌岩来区分,要考虑上覆土层的性质和厚度、桩长径比、嵌入基岩性质、嵌岩深径比和桩底沉渣厚度等因素。   2、科学计算桩基承载力   桩基承载力的计算是桥梁设计的重要内容。关于承载力的计算公司,《公路桥涵地基与基础设计规范》(JTG D63-2007)给出了明确的规定:支承在基岩上或嵌入基岩内的钻(挖)桩,其单桩轴向受压容许承载力[Р],可按下式计算:   [Р] =(c1 A+c2 U h)Ra   其中:Ra――天然湿度的岩石单轴极限抗压强度   h――桩嵌入基岩深度,不包括风化层   U――桩嵌入基岩部分的横截面周长,按设计直径计算   A――桩底截面面积   c1、c2――根据清孔情况、岩石破碎程度等因素确定的系数   上式表明:嵌岩桩的单桩轴向受压容许承载力[Р],仅取决于桩底处岩石的强度和嵌入基岩的深度,以及清孔情况、岩石破碎程度等因素。根据规范描述,通常认为只要是嵌岩桩,就是端承桩,就适用于这个公式。实际上,只有在嵌岩桩在清孔绝对干净,桩底处于理想支撑,桩底岩石完整且强度很高时,桩的竖向位移很微小,桩基才表现为典型的端承桩,公式的使用是无可争议的。实际工程中,只有当桩基长径比较小,土层侧阻力占比例不大时,桩基主要表现为端承桩的特征,公式才可使用。   公式中对“h”的要求是“桩嵌入基岩的深度,不包括风化层”。通常的理解是桩必须嵌入新鲜基岩,而不论其上面风化岩层的强度如何。有的强风化硬质岩(如花岗岩),其极限强度往往大于极软岩新鲜岩的强度。说明一般硬质岩的微弱风化层、甚至强风化层的强度都相当高,不考虑这些层次的嵌岩深度,一律要求嵌入新鲜基岩是不妥的。按照这个原则,在风化层很厚的情况下,桩基嵌岩很深。在设计上,必然导致计算承载力[Р]远小于实际极限承载能力Р;在施工上,则会导致工程量的增大,工期的延长。   工程试验证明,当岩面较平整,桩的嵌岩深度h2d 时,桩侧嵌固力约占总荷载50%以上。随着嵌固深度增加,承载力也随之增大。但嵌固深度h3d 时,承载力增长不大。公式中没有对h 规定限值,也没有随h 值增大而设定相关的折减系数。因此,在桩基设计实践中,当桩基承载力需要通过较大的嵌岩深度来提高时,不妨考虑加大桩径。   3、准确确定嵌岩深度及桩端持力层厚度   桥梁工程桩基设计中,经常会遇到两软弱岩层之间穿越强度很高的一定厚度的岩层(夹层),或者有些地区溶洞比较发育。如果这种夹层厚度不够承载厚度要求,钻孔桩就需要穿越夹层,以达到持力层,这对施工机械和施工进度都是极

文档评论(0)

you-you + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档