- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
耳机驱动解决方案耳机驱动解决方案
耳机驱动解决方案
如今在连接耳机放大器时经常听到“零电容” 或“无电容”这类炫耀式的强调说法。目前市场上已经出现了几种这类的解决方案,都是颇为激进地基于几种不同的技术。这几种解决方案的优缺点并非总是那么明显颇具讽刺意义的是,相对于过去的传统电路,某些最具吸引力的解决方案实际上还需要更多的电容器,但却在某些方面却具有优势,如功耗,爆破音抑制和启动时间等。本文将就这些问题进行深入的探讨,并给出解决方案的合理选择。
1.使用电容器的问题
图所示为一个传统的耳机驱动电路。其左声道和右声道输出放大器采用一个单电源VDD,而其输出端的直流电压位于电源轨的中点,即VDD/2。为了消除该直流电压,在放大器后面插入了两只电容器。
图1:传统的耳机驱动电路。通常使用电解电容或钽电容,而常见的电容值则为220μF。电路对低频信号的频率响应由这两只电容器的容值和耳机的阻抗共同决定,而低于截止频率fc的音调被衰减。对于220μF的电容值来说,当采用的耳机阻抗为16欧姆时,电路的截止频率为45Hz,而当所用耳机的阻抗为32欧姆时,该截止频率则降到 22.5Hz。不期望采用低于220μF的电容值,因为这将提到电路的低频截止频率,导致低音部分的损耗,这是一个难题,即便是采用目前最先进的信号处理技术,该损耗也只能是得到部分补偿校正。
虽然电容器制造技术也在不断地提升和改进,但仍落后于由于摩尔定律所导致的消费电子体积快速减小和成本快速降低的步调。其结果是,仅仅这两只220μF的电容器就占据了个人媒体播放器或手机电路板上的绝大部分空间。如今,尽管在电容器的物理尺寸、高度以及成本等方面可以取得一些折衷,但传统的解决方案最终还是无法满足绝大多数应用的要求。这就是图1所示电路存在的主要问题。
这种电路在启动时还存在另一个不太明显的问题。启动前,所有的电路节点上的电压都是0V,两只电容开始被充电。但是在正常的工作过程中,每只电容的左侧电压是VDD/2(直流项),而右侧则停留在0V。要实现这一状态,必须驱动一个电流通过电容器对其充电。这样,在启动过程中,如果放大器的输出从0V瞬间跃升至VDD/2,该充电电流上将会出现一个很大的短时间电流尖峰。因为任何通过电容器的电流都将通过耳机,于是将产生一个很大的爆破噪音,这在当今的市场上市无法接受的。当然,通过延缓放大器输出电平的提升可以减小充电电流的幅度和摆率,从而将噪音降低到一个听不到的程度,但代价却是大大地增加了启动时间。这是一个很大的缺陷,因为语音回放通常是用户接口的一部分,例如,确认某个按键是否被按下,或者是否选择了某个选项。这类用户输入事件与所期望的确认音之间的长延迟会显得系统笨拙和反应迟缓。
对终端用户来说,无论是爆破噪音还是用户接口的响应速度都是至关重要的,这使得系统设计师进退两难。然而,令人有点惊奇的是,许多人为了避免开机延迟过大,保持耳机放大器的电源始终不关断,即便是在不需要的时候也是如此。这种做法无疑增加了待机功耗,从而违背了如今已成为普遍的、电池供电系统中严格且精细的功率管理准则。音频期间提供商通过提供低功耗待机模式来响应积极的功率管理,将放大器的输出偏置到VDD/2,从而消耗比回放过程中更少的功耗。不过,这只是一个不完善的解决方案,由于它需要一个条件,就是VDD电源电压必须始终提供,即产生电源电压VDD的电压调整器始终不能关断,这也会缩短待机电池的寿命。
总起来说,传统的耳机驱动电路迫使系统设计师采取折衷,这种折衷方式应经开始日益被接受。首先是要在电容器的物理尺寸,电容器的成本以及系统的低频响应之间采取折衷;其次,还要在爆破噪音,较长的启动时间,高待机功耗以及增加的额外成本之间做出痛苦的抉择。
2.“虚拟接地”方案
一种不采用电容器的替代解决方案如图2所示。这里,增加了一个第三放大器,并被接到耳机的地线柱上(即一般的TRS连接器的插套上)。它作为一个虚拟地,提供没有交流分量的VDD/2直流电压。左声道和右声道与图1中的传统电路相比没有变化。由于无论是左声道还是右声道与虚拟地之间的直流电压差都是0,从而不再需要隔离直流电容器。
图2:采用虚拟接地的无电容耳机驱动电路。这种解决方案具有三重优点。首先是比传统电路体积小,高度低且价钱便宜;其次,其低频响应平坦,从而保证了低音的精确再现;最后是启动时间小,因为无需再对隔离直流电容充电。音频器件提供商提供这种虚拟接地的解决方案已经有数年了,市场上被称作为“伪差分”,以及“无输出电容”和“虚地”。目前已经有许多OEM厂商采用了这种解决方案,其中不乏一些知名品牌的公司。
但是,这种解决方案并非没有问题。缺点之一就是由于增加了一个 “虚拟接地”放大器所引起的功耗增加。假定采用的是小输出幅度和阻性负载的B类放大器,其功耗等同于左声道和右声道放大器加起来的总和
文档评论(0)