- 1、本文档共10页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[ELM概述
1 人工神经网络概述
人工神经网络(Artificial Neural Networks, ANNs)作为机器学习领域非常经典和实用的学习算法,在很多应用领域已经得到了广泛应用. 1943年, W.S. McCulloch和W. Pitts开创性的提出了一种服从兴奋和抑制变化的M-P模型.1969年, M. Minsky等人在充分考虑已有的神经网络系统的优劣点之后,在撰写的《Perceptron》中指出了已有感知器在处理一些具体问题中的不足之处. J. J.Hopfield在其构建的网络模型中引入了“计算能量”概念,并且对构建网络进行了稳定性分析,极大地推进了神经计算的发展.如今,人工神经网络已经有自组织映射、反馈网络和Hopfield网络等近40种模型,每种网络模型都有着各自的特点.人工神经网络的研究已经得到许多学者的广泛关注,作为人工智能和机器学习的一个重要的组成部分,相应的网络结构和优化算法也日趋完善.
人工神经网络是利用仿生学原理构建的用于信息处理的数学模型,能够很好的模拟大脑神经系统的信息传播机制.该网络模型是按照一定的规律由许多隐层节点(神经元)相互连接而成,通过神经元相互作用的动态过程来完成信息处理.每个节点处均设置有一个加和器和一个激活函数(Activation Function),相邻隐层之间的节点通过权值(连接权)连接.这种网络通过增加隐层数和每层神经元个数来提高网络复杂程度,并通过调整相应的连接权值来达到处理信息的目的.在大多数网络模型中,节点间的权值是借助特定的优化算法,通过迭代的方式来最终确定的.网络的迭代通常是在达到一定的训练精度或者一定的迭代次数上限时终止.于此同时,网络的连接权值也最终确定,该过程也可以认为是构造的人工神经网络的“记忆”过程.这样就达到了用网络参数学习的方法来模拟给定样本输入和输出之间的潜在规律的效果,然后利用已得到的网络对该类型的其它数据进行预测,也称之为网络的泛化过程.
以下列举了神经网络的几个特征:
(1)自适应和自组织能力:在网络参数的优化过程中,通过特定的算法来调节连接权,从而达到学习样本输入和输出之间潜在关系的目的,并利用训练得到的网络,对同类型的测试样本输出进行预测.
(2)泛化能力:如果选取的训练样本分布比较均匀,并且数量足够.一般情况下,得到的网络就有很好的预测能力和泛化效果.
(3)非线性映射能力:在其他的经典方法中,处理复杂问题(特别是已知信息量较少的情况下)时,效果欠佳.而神经网络中,特别是在选取适当的激活函数的情况下,可以再对未知的样本输入和输出之间潜在关系没有太多了解的情况下,达到很好的稳定的泛化效果.
(4)高度并行性:该特点并未得到所有学者的肯定,但是人工神经网络是利用仿生学原理,从生物神经系统的信息传播机制抽象得到的数学模型.人在日常生活中可以同时去做许多事,从模拟的层面来讲,高度并行性也应该能够在人工神经网络的工作机制中得到体现.
2 ELM 算法概述
由于传统的人工神经网络中,网络的隐层节点参数是通过一定的迭代算法进行多次优化并最终确定的。这些迭代步骤往往会使参数的训练过程占用大量的时间,并且,例如BP算法很容易产生局部最优解,从而使网络训练过程的效率得不到保证。为增强构建网络的整体性能, 2004年南洋理工大学黄广斌Huang G.B.副教授等人提出了ELM算法。极限学习机(ELM Extreme Learning Machine)是一种快速的的单隐层神经网络(SLFN)训练算法(见注释1示意图)。该算法的特点是在网络参数的确定过程中,隐层节点参数(见注释2)随机选取,在训练过程中无需调节,只需要设置隐含层神经元的个数,便可以获得唯一的最优解;而网络的外权(即输出权值)是通过最小化平方损失函数得到的最小二乘解(最终化归成求解一个矩阵的 Moore-Penrose 广义逆问题)径向基函数神经网络
注释:
1、从神经网络的结构上来看,ELM是一个简单的SLFN,SLFN示意图如下:该SLFN包括三层:输入层、隐含层和输出层(忽略输入层则为两层)。其中隐含层包括L个隐含神经元,一般情况下L远小于N,输出层的输出为m维的向量,对于二分类问题,显然该向量是一维的。
2、内权和偏置值
内权:输入层与隐含层间的连接权值;偏置值:隐含层神经元的阈值。
ELM的输出权值是由最小二乘法(least square,LS)计算得出,然而经典的LS估计的抗差能力较差,容易夸大离群点和噪声的影响,从而造成训练出的参数模型不准确甚至得到完全错误的结果。为了解决此问题,提出一种基于M估计的采用加权最小二乘方法来取代最小二乘法计算输出权值的鲁棒极限学习机算法(RBELM),通过对多个数据集进行回归和分类分析实验,结果表明,该方法
您可能关注的文档
- [精彩生活经典语录.ppt
- [英语美文美句,课堂演讲PPT.ppt
- [D70参考.doc
- [电影两小无猜的转场技巧.doc
- [英语系圣诞晚会游戏部分.ppt
- [D70基本菜单如何设置.doc
- [D3盒子使用说明.doc
- [D80使用技巧.doc
- [DataTable操作性能优化.docx
- [DB33T624-2006动物组织中特布他林、克伦特罗、沙丁胺醇和莱克多巴胺残留量的测定气相色谱-质谱法.doc
- 温州乐成寄宿中学2023年高三第二次模拟考试语文试卷含解析.doc
- 湖南省浏阳市第二中学2022-2023学年高三第一次调研测试语文试卷含解析.doc
- 甘肃省张掖市高台县重点名校2024年中考一模英语试题含答案.doc
- 甘肃省会宁县第四中学2024届高三下学期第六次检测语文试卷含解析.doc
- 滁州市重点中学2024届高三第四次模拟考试语文试卷含解析.doc
- 福建省福州市仓山区福建师范大学附属中学2023届高考冲刺模拟英语试题含解析.doc
- 福建省平和县一中2022-2023学年高考压轴卷语文试卷含解析.doc
- 湖南省长沙市一中、湖南师大附中2023年高三英语第一学期期末学业质量监测模拟试题含解析.doc
- 监狱警察职业道德培训课件.pptx
- 福建省漳州市平和一中、南靖一中等五校2023年高三第六次模拟考试语文试卷含解析.doc
最近下载
- 某工作面探放水风险专项辨识评估报告.docx
- 大班科学《辨别左右》微课件.pptx VIP
- 一种持久强净污的负载钛系催化剂活性炭及其制备方法.pdf VIP
- 电子技术基础第3版霍亮生课后部分参考答案.pdf
- 2024郑州高三一模化学试卷含参考答案 .pdf VIP
- 大学生职业规划大赛《临床医学专业》生涯发展展示PPT.pptx
- 2023数据中心AI节能技术.pdf
- 江西省“三新”协同教研共同体2023-2024学年高二上学期12月联考政治试题(解析版).docx VIP
- (高清版) 0434-2023 岩盐钻井水溶开采矿山地质工作规范.pdf VIP
- 中心静脉压CVP测量技术团体标准解读.pptx
文档评论(0)