- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
外文翻译部分:
英文原文
Mine-hoist fault-condition detection based on the wavelet packet transform and kernel PCA
Abstract: A new algorithm was developed to correctly identify fault conditions and accurately monitor fault development in a mine hoist. The new method is based on the Wavelet Packet Transform (WPT) and kernel PCA (Kernel Principal Component Analysis, KPCA). For non-linear monitoring systems the key to fault detection is the extracting of main features. The wavelet packet transform is a novel technique of signal processing that possesses excellent characteristics of time-frequency localization. It is suitable for analyzing time-varying or transient signals. KPCA maps the original input features into a higher dimension feature space through a non-linear mapping. The principal components are then found in the higher dimension feature space. The KPCA transformation was applied to extracting the main nonlinear features from experimental fault feature data after wavelet packet transformation. The results show that the proposed method affords credible fault detection and identification.
Key words: kernel method; PCA; KPCA; fault condition detection
1 Introduction
Because a mine hoist is a very complicated and variable system, the hoist will inevitably generate some faults during long-terms of running and heavy loading. This can lead to equipment being damaged , to work stoppage, to reduced operating efficiency and may even pose a threat to the security of mine personnel. Therefore, the identification of running faults has become an important component of the safety system. The key technique for hoist condition monitoring and fault identification is extracting information from features of the monitoring signals and then offering a judgmental result. However, there are many variables to monitor in a mine hoist and, also, there are many complex correlations between the variables and the working equipment. This introduces uncertain factors and information as manifested
您可能关注的文档
最近下载
- 继续教育《生态文明建设的理论与实践》考试试题及答案.docx VIP
- YMO青少年数学思维27届1-6年级全国总决赛试卷.pdf VIP
- 部编版小学语文四年级下册《古诗三首》《芙蓉楼送辛渐》预习单知识要点梳理.pdf
- 2024-2025学年高考数学一轮复习讲义:指数与指数函数(学生版+解析).pdf VIP
- 罗宾斯组织行为学第18版英文教学课件robbinsjudge_ob18_inppt_04.pptx
- 2024年中考英语热点阅读练习专题2 科学技术(含解析) .pdf VIP
- 质量部QC组年度工作总结暨年工作规划(PPT59页) .ppt
- WPS表格初级试题含答案.doc
- 2024年中考英语时文阅读06(科技与体育).doc VIP
- 2023年内蒙古大学公共课《中国近代史纲要》期末试卷A(有答案).docx VIP
文档评论(0)