- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[线性代数在实际生活中的应用
线性代数在生活中的实际应用
制药工程学院 环境科学 苏雷大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。 ;;;初等的数学知识 学习线性代数数学建模 函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。
线性代数中行列式 实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。
例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、 化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克?
解:
由克莱姆法则,此方程组有唯一解:;;
即甲乙丙三种化肥各需 3千克 5千克 15千克、
矩阵实质上就是一张长方形的数表,无论是在日常生活中还是科学研究中,矩阵是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度表、车站时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面看起来杂乱无章的关系弄得晕头转向。塌还可以恰当的给出事物之间内在的联系,并通过矩阵的运算或变换来揭示事物之间的内在联系。它也是我们求解数学问题时候“数形结合”的途径。矩阵的运算是非常重要的内容。
例:计算
解:
矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。向量组的线性相关,向量空间,向量组的秩,n维向量。这些都是线性代数的核心概念。线性代数在应用上的重要性与计算机的计算性能成正比例增长。而这一性能伴随着计算机软硬件的不断创新提升,最终,计算机并行处理和大规模计算的迅猛发展将会吧计算机科学与线性代数紧密的联系在一起并广泛应用于解决飞机制造,桥梁设计,交通规划,石油勘探,经济管理等科学领域。线性模型比复杂的非线性模型更易于用计算机进行计算。线性方程组应用广泛。主要有网络流模型,人口迁移模型,基因问题,求血液的流率和血管分支点出的压强等等。线性方程组的解法其中至关重要的
例如 求解齐次线性方程组
解:
即得与原方程组同解的方程组
由此即得
方阵的特征值、特征向量理论及方阵的相似对角化的问题,这些内容不仅在数学本身的研究中具有重要的作用,在其他的许多科学领域中也有重要的应用。例如,在生物信息学中,人类基因的染色体图谱在进行DNA序列对比是就用到了矩阵的相似,这个概念。线性代数学习对数学建模十分必要。那么, 为什么线性代数得到广泛运用, 也就是说, 为什么在实际的科学研究中解线性方程组是经常的事, 而并非解非线性方程组是经常的事呢? 这是因为, 大自然的许多现象恰好是线性变化的。按照辩证唯物主义的观点, 世间的一切事物都是在不断地运动着的.所谓运动, 从数学上描述, 就是随时间而变化, 因此, 研究各个量随时间的变化率, 即导数, 与各个量的大小之间的关系, 就是非常重要的. 以下为线性代数实际解决的应用问题:
例1: 基因间“距离”的表示
在ABO血型的人们中,对各种群体的基因的频率进行了研究。如果我们把四种等位基因A1,A2,B,O区别开,有人报道了如下的相对频率,见表1.1。
表1.1基因的相对频率
爱斯基摩人f1i 班图人f2i 英国人f3i 朝鲜人f4i A1 0.2914 0.1034 0.2090 0.2208 A2 0.0000 0.0866 0.0696 0.0000 B 0.0316 0.1200 0.0612 0.2069 O 0.677
文档评论(0)