交流电动机传动系统的控制技术发展综述..docx

交流电动机传动系统的控制技术发展综述..docx

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
交流电动机传动系统的控制技术发展综述.

目录1 引言12异步电动机传动系统的控制策略12.1 转速开环恒压频比控制12.2转速闭环转差频率控制22.3 矢量控制32.4直接转矩控制32.5 基于无速度感器的交流传动控制技术53 同步电动机传动系统的控制策略64 总结与展望8参考文献9交流电动机传动系统的控制技术发展综述刘雪松 大连交通大学1 引言现代电力电子技术的迅猛发展,新型电力电子器件不断问世,为交流传动奠定了坚实的物质基础;控制理论的逐步完善大大提高了交流传动系统性能;现代信息技术日新月异的发展,为控制系统技术的进步提供了保障;交流电机自身无可争辩的优势,是拓展交流传动系统的良好基础。交流传动系统在性能上也已取得了长足发展,具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好技术性能,其动、静态特性完全可以和直流传动系统相媲美,被人们提了多年的“交流传动取代直流传动”的愿望正在变为现实。交流传动系统之所以能有如此巨大进步,主要得益于电力电子学、微电子学和控制理论的惊人发展,尤其是先进控制策略的成功应用。纵观交流电机控制策略的发展,先后涌现出大量的方式方法,其中具有代表性的有:转速开环恒压频比(U/f=常数)控制、转差频率控制、矢量控制(磁场定向控制)、直接转矩控制等。此外,无速度传感器的交流传动控制技术也已成为近年研究热点。这些策略各有优缺点,在实际应用中必须根据具体要求适当选择,才能实现最佳效果,能全面了解上述各种控制策略非常重要。本文正是基于此目的,对交流电机的各种控制策略进行了较为全面的综述与比较,力图反映交流传动在控制策略方面的必威体育精装版研究进展。2 异步电动机传动系统的控制策略2.1 转速开环恒压频比控制最简单的异步电动机变压变频调速系统就是恒压频比控制系统。为了满足低速时的带载能力,还须备有低频电压补偿功能。转速开环恒压频比控制调速系统通常由数字控制的通用变频器-异步电动机组成,需要设定的控制信息主要有U/f特性、工作频率、频率升高时间、频率下降时间等,还可以有一系列特殊功能的设定。采用恒压频比控制时,只要改变设定的“工作频率”信号,就可以平滑地调节电动机转速。低频时或负载的性质和大小不同时,须靠改变U/f函数发生器的特性来补偿,使系统产生足够的最大转矩。要使电机的转速得到快速响应,必须有效地控制转矩。开环恒压频比控制只控制了电机的气隙磁通,而不能调节转矩,可以满足一般平滑调速的需要,但静、动态性能都有限,性能不高,如果要提高性能,在对动态性能要求不高的情况下,可以采用转速闭环转差频率控制系统。图2-1 恒压频比控制调速系统中变频器的基本控制作用2.2转速闭环转差频率控制转速闭环控制的基本方法是在调速系统外环设置转速调节器,转速调节器的输出应该是转矩给定的信号。如果保持气隙磁通Φ不变,异步电动机的转矩就近似与转差率频率ω成正比,因而控制转差角频率ω就能代表控制转矩。因此,转差频率控制系统对角速度的检查的准确性要求较高。转差频率控制能够在一定程度上控制电机转矩,但它依据的只是稳态模型,并不能真正控制动态过程中的转矩,从而得不到很理想的动态控制性能。图2-2 转速闭环转差频率控制的变压变频调速系统结构原理图2.3 矢量控制1971年,由F.Blaschke提出的矢量控制理论将交流传动的发展向前推进了一大步,使交流电机控制理论获得第一次质的飞跃。其基本原理为:以转子磁链这一旋转空间矢量为参考坐标,将定子电流分解为相互正交的2个分量,一个与磁链同方向,代表定子电流励磁分量,另一个磁链方向正交,代表定子电流转矩分量,然后分别对其进行独立控制,获得像直流电机一样良好的动态特性。iBiAiCΦω图2-3 异步电动机的坐标变换结构图3/2—三相-两相变换 VR—矢量旋转变换器 Φ—M轴与α轴(A轴)的夹角尽管矢量控制方法从理论上可以使异步电机传动系统的动态特性得到显著改善,但也带来一些问题,即太理论化,实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使转矩的控制效果打了折扣。从电机本身看,其参数具有一定时变性,特别是转子时间常数,它随温度和激磁电感的饱和而变化,矢量控制系统对参数变化的敏感性使得实际控制效果难以达到理论分析的结果。即使电机参数与转子磁链被精确知道,也只有稳态的情况下才能实现解耦,弱磁时耦合仍然存在。另外,矢量控制理论首先是认为电机中只有基波正序磁势,这和实际差别不小,所以一味追求精确解耦并不一定能得到满意的结果。而且,采用普通PI 调节器的矢量控制系统,其性能受参数变化及各种不确定性影响严重,即使在参数匹配良好的条件下能取得好的性能,一旦系统参数发生变化或受到不确定性因素的影响,则导致性能变差。2.4直接转矩控制针对矢量控制存在的不足,Depenbrock教授于1985年首次提出异步电机直接转矩控制

文档评论(0)

kakaxi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档