网站大量收购闲置独家精品文档,联系QQ:2885784924

[考虑不确定因素的污水厂日进水量预测法.docVIP

[考虑不确定因素的污水厂日进水量预测法.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[考虑不确定因素的污水厂日进水量预测法

考虑不确定因素的污水厂日进水量预测法     污水处理厂进水量预测分为中长期预测和短期预测,短期预测包括日周期水量预测和星期水量预测。水量预测的精度对污水处理厂设计、运行具有非常重要的作用。水量预测常规方法有时间序列法、回归分析法等。时间序列法根据水量的历史数据建模,并利用模型预测未来的水量;回归分析方法利用历史数据可以建立起水量与其他影响水量因素的关系,由这些因素未来数据预测出未来的水量值。   现有的水量预测方法存在的主要问题是:由于影响水量的因素很多,而且各因素与水量之间的关系是复杂多样的,因而要将各种因素归于同一回归方程相当困难;时序模型能较好地反映水量本身的变化趋势,但它不能考虑其他因素对水量的影响,因而使预测效果不理想。比较理想的预测方法是将回归分析法和时间序列法相结合,两者互为补充,但需要探寻一种理想的数学结合方法。同时,水量预测中存在很多不确定因素,在这些影响因素下日水量数据构成了一个非平稳随机时间序列。   针对上述问题,以及污水厂进水量依不同天气的敏感程度和影响程度不同的特点,重点研究了天气因素对进水量预测精度的影响,将影响因素划分为三类,并利用人工神经网络技术确定天气因素敏感模型,采用水量预测的分解建模方法以克服水量预测因天气因素的影响而呈现的预测精度不稳定,提高预测精度对天气因素影响的鲁棒性。 1 基本思路 1.1影响因素的类别划分   污水处理厂水量的短期预测是预测未来l日—7日的水量。研究表明,水量预测一般会受下列三类因素的影响:第一类为日类型,第二类为天气状况,第三类为特别事件。   ①日类型   日类型包括工作日(星期一至星期五)、双休日和节假日(公共节假日)。预测日的日类型不同,水量变化是有一定区别的。   ②天气状况   在相同的日类型前提下,天气状况如日最高温度、最低温度、天气情况、降雨量、降雨历程等对进水量变化曲线的影响。   ③特别事件   特别事件是指一些非经常性出现的事件,其构成对进水量的影响是和日类型及天气状况不相关的影响。如重要政治、经济活动等以及设备检修、事故发生与处理等。 1.2水量预测信息的构成及来源   考虑因素影响的短期水量预测需要三类信息:污水处理厂运行记录的进水量历史数据;气象部门提供天气状况的历史数据和预报数据;可以获知的特别事件是否发生的有关信息。 2 预测模型的建立   污水厂日进水量特征及日周期水量预测均可用日水量曲线表征,日水量曲线一般为按小时间隔的某时刻的水量组成。从大量的日水量曲线中可以看出,尽管受1.1所述三个因素的影响而每日有所变化,但对于特定的污水处理厂,水量曲线仍有两个较固定的特点:一是最大水量和最小水量出现的时刻基本固定,虽然有一个小区间的变化范围;二是水量曲线的形状基本相近。但是在实际预测中,任意某固定时刻影响水量预测因素的数据一般难于得到,如天气因素在每个固定的时刻都将对水量产生影响,然而就天气状况预测数据而言,气象台预测数据一般是按天来提供的,只有预测日的最高温度、最低温度、天气状况、平均湿度等数据。特别事件一般则很难得到确定性信息,对其准确的发生时间、持续时间及影响等都是十分模糊的。因此,采用不对每一个预测点进行分别建模和预测,而是采用水量预测分解建模的方法。 2.1水量预测分解建模方法 2.1.1样本非常数据影响的削弱   因偶然因素引起实际水量较大波动的数据(预测时>1.25或<0.85倍的平均值)定义为水量预测的非常数据,对这类非常数据作如下处理。   取第i日同一时刻j的水量数据WQ(i,j)构成数组:      {WQ(i,j)i=1,2,……,n;j=1,2,……,24}   其平均值为:     2.1.2水量变化系数模型   假设日最大和最小水量分别为WQMAX和WQMIN,WQ(j)为第j时刻的进水量,日水量曲线变化的形状由各时刻水量变化系数WQcoe(j)来表达:     WQcoe(j)=f[WQMAX,WQ(j),WQMIN]=[WQMAX-WQ(j)]/[WQMAX-WQMIN]       (3)   式中  j——日水量时刻的序号,取j=1,2,…,24   采用将日最大和日最小水量分别建模的方法,分别预测出WQMAX和WQMIN 以及时刻水量变化系数WQcoe(j),便可得到预测日时刻的水量:     WQ(j)=WQMAX-WQcoe(j)×(WQMAX-WQMIN)       j=1,2,…,24         (4)   上式是完全基于对水量变化的物理意义得出的,和常规的仅从水量样本序列本身为研究对象得出的预测方法有着本质的区别。 2.1.3各时刻WQcoe(j)的预测模型   日时刻进水量的变化系数,除受日类型、天气状况和特别事件的影响外,还和预测日临近的前n日的水量变化系数有关,用函数表

文档评论(0)

1789811832 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档