oppor7plusm刷机教程 Chapter4 M-Plus 教程.doc

  1. 1、本文档共45页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
oppor7plusm刷机教程 Chapter4 M-Plus 教程 导读:就爱阅读网友为您分享以下“Chapter4 M-Plus 教程”资讯,希望对您有所帮助,感谢您对92的支持! Examples: Exploratory Factor Analysis CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS Exploratory factor analysis (EFA) is used to determine the number of continuous latent variables that are needed to explain the correlations among a set of observed variables. The continuous latent variables are referred to as factors, and the observed variables are referred to as factor indicators. In EFA, factor indicators can be continuous, censored, binary, ordered categorical (ordinal), counts, or combinations of these variable types. EFA can also be carried out using exploratory structural equation modeling (ESEM; Asparouhov Muthén, 2009a) when factor indicators are continuous, censored, binary, ordered categorical (ordinal), and combinations of these variable types. ESEM examples are shown under Confirmatory Factor Analysis. Several rotations are available using both orthogonal and oblique procedures. The algorithms used in the rotations are described in Jennrich and Sampson (1966), Browne (2001), Bernaards and Jennrich (2005), Browne et al. (2004), and Jennrich and Bentler (2011, 2012). Standard errors for the rotated solutions are available using algorithms described in Jennrich (1973, 1974, 2007). Cudeck and O?Dell (1994) discuss the benefits of standard errors for rotated solutions. All EFA models can be estimated using the following special features: ? Missing data ? Complex survey data ? Mixture modeling The default is to estimate the model under missing data theory using all available data. The LISTWISE option of the DATA command can be used to delete all observations from the analysis that have missing values on one or more of the analysis variables. Corrections to the standard errors and chi-square test of model fit that take into account stratification, non-independence of observations, and unequal probability of selection are obtained by using the

文档评论(0)

raojun00007 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档