- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
毛细管电泳的基本原理及应用.
毛细管电泳的基本原理及应用
摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,HPLC分析高效、快速、微量。Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。毛细管电泳和高效液相色谱(HP)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率速度、样品用量和成本来说,毛细管电泳都显示了一定的优势基本原理
是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法
熔融石英毛细管的两端分别浸在含有电解缓冲液的贮液瓶中,毛细管内也充满同样的电解缓冲液。在毛细管接收端之前安装在线检测系统。被分析样品可以从进样系统采用重力法、电迁移法、抽真空法等多种进样方式引入到毛细管的进样端。当样品被引入后,便开始在毛细管两端施加电压 。样品溶液中溶质的带电组分在电场的作用下根据各自的荷质比向检测系统方向定向迁移。CE中的毛细管目前大多是石英材料。当石英毛细管中充入 pH值大于 3的电解质溶液时 ,管壁的硅羟基(- SiOH)便部分解离成硅羟基负离子(- SiO-) ,使管壁带负电荷。在静电引力下 ,- SiO-会把电解质溶液中的阳离子吸引到管壁附近,并在一定距离内形成阳离子相对过剩的扩散双电层 (见图 2[4])。
在外电场作用下 ,上述阳离子会向阴极移动。由于这些阳离子实际上是溶剂化的(水化的),它们将带着毛细管中的液体一起向阴极移动,这就是 CE中的电渗流(EOF)。电渗流的强度很高,以致于所有进入毛细管中的样品,不管是阴离子、阳离子或中性分子,都会随着液体向阴极移动。因待测样品中正离子的电泳方向与电渗流方向一致,故最先到达毛细管的阴极端;中性粒子的电泳速度为零 ,迁移速度与电渗流速度相当;而负离子的电泳方向则与电渗流方向相反,但因电渗流速度约等于一般离子电泳速度的 5~7倍[5],故负离子也将在中性粒子之后到达毛细管的阴极端。由于各种粒子在毛细管内的迁移速度不一致,因而使各种粒子在毛细管内能够达到很好的分离。
3 毛细管电泳的分离模式
以上各模式以毛细管区带电泳毛细管凝胶电泳胶束电动毛细管色谱3种应用较多。
LiYM[7]以SDS(十六烷基磺酸钠)为阴离子表面活性剂将黄芩中的 6 种主要的黄酮类化合物分离。李伟等[8]以磷酸盐为缓冲体系 ,利用 CZE模式分离、 测定了大黄提取液中离蒽醌化合物的含量。
4. 2 CE在手性拆分中的应用
CE因其高效、快速、选择性强的特点而成为目前最有效的手性拆分方法。各种CE分离模式皆可用于对映异构体分离,因此手性拆分成为 CE应用最活跃、 最独特的领域。其中,添加剂法只需向电泳缓冲液中加入合适的手性试剂,经过一定的分离条件优化即能实现手性分离。又因为可选择的添加剂种类很多,此法是 CE进行手性拆分的主要形式。目前 ,主要的手性添加剂有环糊精类(CDs)、冠醚类、大环抗生素、蛋白质等。仅环糊精一类就有α-CD,β-CD,γ-CD,HP-α-CD, CM-β-CD 等多种添加物质 ,其应用十分广泛。此外,其他种类添加剂的应用结合 MECC和 NACE 模式基本上能实现各种手性药物的拆分[9~11]。
4.3 CE用于肽和蛋白分析
CE在蛋白质分离分析中的应用主要包括肽和蛋白的鉴别分析、结构分析、微量制备,蛋白的定量测定、纯度检测、非均一性检测、定性和动力学研究。CE在肽和蛋白质的别分析中应用最多的是CZE测定肽谱, SDS-CGE测蛋白分子量及CE-MS直接测定分子量。用CZE还可测定蛋白的物理参数,如蛋白的有效尺寸、电荷和扩散系数。用CIEF测定蛋白等电点比平板凝胶电泳测等电点的方法简单,可直接监测。蛋白被酶解或化学裂解成肽片断,利用CZE的高分辨率分离后所得的电泳图称CE肽图。肽图是进行蛋白序列分析的第一步,随后
文档评论(0)