网站大量收购独家精品文档,联系QQ:2885784924

基于STM32F107的搬运机器人电机控制系统设计..docx

基于STM32F107的搬运机器人电机控制系统设计..docx

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于STM32F107的搬运机器人电机控制系统设计.

基于STM32F107的搬运机器人电机控制系统设计 李辉,郭文成,陈浩天津工业大学电气工程与自动化学院,天津300000摘要: 针对搬运机器人的前轮转向舵机和后轮驱动电机的控制要求,采用以Cortex-M3为内核的STM32F107作为主控制器,采用嵌入实时操作系统μC/OSII,将程序分成启动任务、电机转速控制任务、舵机控制任务等相对独立的多个任务,并设定了各任务的优先级。该系统能较好地实现搬运机器人的运动控制。关键词: 搬运机器人;STM32F107;运动控制;μC/OS-II;任务调度中图分类号: TP242文献标识码: AMotor Control System in Transfer Robot Based on STM32F107Li Hui, Guo Wencheng, Chen HaoElectrical Engineering and Automatization College, Tianjin Polytechnic University, Tianjin 3000000, ChinaAbstract: With the problem of transfer robot front wheel steering engine and rear wheel driver engine control, the design takes STM32F107 as the kernel based on Cortex-M3 and embedded realtime operating system μC/OSII. It divides the program into initiating task, motors speed control task, steering engine control task and other relatively independent tasks, setting the priority of each task. The system can achieve motion control for transfer robot.Key words: transfer robot; STM32F107; motion control; μC/OS-II; task scheduling引言 随着人工成本的不断升高,用机器人代替人力去做一些重复性的高强度的劳动是现代机器人研究的一个重要方向。搬运机器人在导航寻迹中,需要后轮驱动电机和前轮舵机的协调工作。搬运机器人电机驱动有其特殊的应用要求,对电机的动态性能要求较高,能在任意时刻到达控制需要的指定位置并且使舵机停止在任意角度;电机驱动的转矩变化范围大,既有空载平整路面行使的高速度、低转矩工作环境,也有满负载爬坡的运行工况,同时还要求保持较高的运行效率[1]。根据以上的技术要求,本文选用了控制技术成熟,易于平滑调速的直流电机作为搬运机器人的执行机构。1 系统的硬件设计1.1 机器人电机控制器硬件结构 主控制器采用Cortex-M3内核的STM32F107。控制器内部共有8个定时器,其中TIM1_CH1和TIM8_CH1为高级控制定时器引脚,TIM1_CH1用于电机编码器计数。TIM8_CH1用于舵机控制基准时间。通用定时器引脚TIM2_CH1、TIM3_CH1、TIM4_CH1、TIM5_CH1分别用于电机和舵机驱动电路上下桥壁PWM的产生。触发EXIT0中断的PA0口和PB0口分别用于电机和舵机的过流中断保护。触发EXIT1中断的PA1口和PB1口用于舵机两侧限位保护。电机驱动电路采用自举升压芯片IR2103和MOSFET管75N75,后轮电机和舵机的相电流采集是通过康铜丝转换成电压,通过放大滤波处理,分别送至STM32F107的A/D采样引脚ADC12_IN1实现过电流保护。通过上位机串口通信或STM32F107内部程序速度给定,控制电机的正反转、速度及舵机的转向。搬运机器人电机控制硬件结构框图如图1所示。图1 搬运机器人电机控制硬件结构框图1.2 模块的选择与设计1.2.1 功率驱动的设计 电机的供电电源是由24 V的蓄电池提供,额定功率为240 W,由4个75N75组成桥式电路来实现。75N75是MOSFET功率管,其最高耐压75 V,最高耐流75 A,电机驱动电路如图2所示。图2 电机驱动电路 Q1、Q4和Q2、Q3分别组成两个桥路,分别控制电机的正转和反转。高端驱动的MOS管导通时源极电压和漏极电压相同且都等于供电电压VCC,所以要实现MOS管正常的驱动,栅极电压要比VCC大,这就需要专门的升压芯片IR2103。控制器产生的PWM信号输入HIN引脚,控制器I/O口输出的EN1、EN2作为使能信号。输出端H

文档评论(0)

sa1fs5g1xc1I + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档