- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
无线传感器网络数据融合关键技术研究.
无线传感器网络数据融合关键技术研究
摘要:路由协议与数据融合技术已成为无线传感器网络(WSN)的一个重要研究方面。本文按照面向应用和面向层次两个分类进行了介绍,并通过联系以数据为中心的路由协议以及相关的数据融合算法,简要分析了其在节省功耗,优化网络性能方面所采取的有效措施。通过仿真实验,推断出以数据为中心的路由协议对网络内数据融合的帮助意义。
关键词:无线传感器网络;路由协议;数据融合;NS2
1 引言
无线传感器网络(wireless sensor network,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者[1]。
路由协议和数据融合已成为无线传感器网络的关键技术。本文首先对现有的几种路由协议和数据融合算法进行介绍,然后通过仿真来验证以数据为中心的路由协议在性能上的优势,以及对数据融合的促进意义。
2 无线传感器网络路由协议
路由协议负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能:寻找源节点和目的节点间的优化路径,将数据分组沿着优化路径正确转发。
2.2面向应用的路由协议
面向应用的路由协议是众多路由协议中较为常见的一种。所谓面向应用,即是与应用模式紧密相连的路由协议。从具体应用角度出发,根据不同应用对传感器网络各种特性的敏感性不同,将路由协议分为四种类型[2]:
1)能量感知路由协议;
2)基于查询的路由协议;
3)地理位置路由协议;
4)可靠的路由协议。
能量路由是最早提出的传感器网络路由机制之一,它根据节点的可用能量(power available,PA)或传输路径上的能量需求,选择数据的转发路径。节点可用能量就是节点当前的剩余能量。
基于查询的路由协议包括定向扩散路由和谣传路由。定向扩散是专门为传感器网络设计的路由策略,是以数据为中心的典型路由协议代表,与己有的路由算法有着截然不同的实现机制。谣传路由引入了查询消息的单波随机转发的机制,克服了使用洪泛方式建立转发路径带来的开销过大的问题。
地理位置路由包括GEAR路由和GEM路由。GEAR(geographical and energy aware routing)路由假设已知事件区域的位置信息,每个节点知道自己的位置信息和剩余能量信息,并且通过一个简单的Hello消息交换机制了解所有邻居节点的位置信息和剩余能量信息。GEM(graph embedding)路由是一种适合于数据中心存储方式的地理路由。其基本思想是建立一个虚拟极坐标系统(virtual polar coordinate system ,VPCS),用来表示实际的网络拓扑结构。网络中的节点形成一个以汇聚节点为根的带环树(ringed tree),每个节点用到树根的跳数距离和角度范围来表示,节点间的数据路由通过这个带环树实现。
2.3面向层次的路由协议
针对无线传感器网络中节点所处的地位,以及网络的拓扑结构,还可以将无线传感器网络的路由协议分为平面结构和分层结构。
平面路由协议包括定向扩散路由协议、谣传路由协议、SPIN路由协议(基于能量感知的路由协议)、HREEMR路由协议(基于多路径的路由协议)、SPEED路由协议、GEM路由协议、边界定位路由协议、有序分配路由协议等。前面介绍的四类面向应用的路由协议大都属于平面的路由协议。
分层路由协议包括:LEACH路由协议、TEEN路由协议、GAF路由协议、GEAR路由协议、SPAN路由协议、SOP路由协议、MECN协议、EARSN路由协议等。这里,我们重点介绍两个相似的路由协议:LEACH和TEEN协议。
3 数据融合技术
所谓数据融合,是将来自多个传感器和信息源的数据信息加以联合、相关和组合,剔除冗余信息,获得互补信息,以便能够较精确地估计出节点的位置和在网络中的地位,以及对现场情况及其传送数据的重要程度进行适时的完整的评价[3]。
对于无线传感器网络系统来说,信息具有多样性和复杂性,因此对数据融合方法的基本要求是具有鲁棒性和并行处理能力。由于来自各种不同传感器的数据信息可能具有不同的特征,于是相应地出现了多种不同的数据融合方法。常用的数据融合算法如图3.1所示[2]:
图3.1 检测分类算法分类
1、贝叶斯推理技术:它解决了经典推理方法的某些困难,贝叶斯推理在给定一个预先似然估计和附加证据(观测)的条件下,能更新一个假设的似然函数。
2、Dempster-Shafer证据区间理论:D-S证据理论是一种不精确推理理论,是贝叶斯推理的扩展,但贝叶斯方法必须给出先验概率,而证据理论则能够处理这种由不知道引起的不确定性。
3、自适应人工神经网络:人工神经网络模型或自适应神经
文档评论(0)