- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
碳基复合材料研究现状及发展趋势.
碳基复合材料研究现状及发展趋势
摘要:碳基复合材料由于其优异的各项性能在航空航天工业、能源技术、信息技术等方面有着很好的应用前景,国内外对高性能复合材料的研究也日趋加深,本文主要从材料的性能来分析其应用及其在未来主要领域的发展趋势。
1 碳基复合材料的特点
碳纤维增强碳复合材料(碳基复合材料,C/C)是具有特殊性能的新型工程材料,是以碳或石墨纤维为增强体,碳或石墨为基体复合而成的材料。碳基复合材料几乎完全是由碳元素组成,故能承受极高的温度和极大的加热速度。该材料具有极高的烧蚀热、低的烧蚀率、抗热冲击,并在超热环境下有高强度,被认为是再入环境中高性能的抗烧蚀材料。它抗热冲击和抗烧诱导能力极强,且具有良好的化学惰性。碳基复合材料做导弹的鼻锥时,烧蚀率低且烧蚀均匀,从而可提高导弹的突防能力和命中率。碳基复合材料还具有优异的耐磨差性能和高的导热,使其在飞机、汽车刹车片和轴承等方面得到应用。
碳基复合材料不仅具有其它复合材料的优点,同时又有很多独到之处。碳基复合材料的特点如下:
(1)整个系统均由碳元素构成,由于碳原子彼此间具有极强的亲和力,使碳基复合材料无论在低温下还是在高温下,都有很好的稳定性。同时,碳素材料高熔点的本性,赋予了该材料优异的耐热性,可以经受住2000℃左右的高温,是目前在惰性气氛中高温力学性能最好的材料。更重要的是碳基复合材料随着温度的升高,其强度不降低,甚至比室温还高,这是其他材料无法比拟的。
(2)密度低(小于2.0g/cm3),仅为镍基高温合金的1/4,陶瓷材料的1/2。
(3)抗烧蚀性能良好,烧蚀均匀可以用于3000 ℃以上高温短时间烧蚀的环境中,可作为火箭发动机喷管、喉衬等材料。
(4)耐摩擦,耐磨损性能优异,其摩擦系数很小,性能稳定,是各种耐磨和摩擦部件的最佳候选材料。
(5)良好的生物相容性,具有与人体骨骼相当的密度和模量,在人体骨骼修复与替代材料方面具有较好的应用前景。
2 碳基复合材料的制备工艺
碳基复合材料制备过程包括:增强体碳纤维及其织物的选择、基体碳先驱体的选择、碳基复合材料预成型体的成型工艺、碳基体的致密化工艺以及最终产品的加工、检测等。选择用何种工艺来制备碳基复合材料时,首先应根据碳基复合材料的应用要求选择使用什么样的纤维和基体,进而确定制备工艺。
预制体是按照产品形状和性能要求先把碳纤维成型为所需结构形状的毛坯,以便进一步进行碳基复合材料密化工艺。对于预制体的编织技术可分为机器编织和手工编织,机器编织技术因其产品易起毛或断裂而未能得到广泛应用;手工编织技术因其产品不存在机器编织的确定性而得到广泛的应用。目前使用较多的是手工缠绕编织和交叉编织,比较先进的是穿刺编织技术。
碳基复合材料致密化工艺过程就是基体碳形成的过程,实质是用高质量的碳填满碳纤维周围的空隙以获得结构、性能优良的碳基复合材料。对于致密化工艺最常用的有两种制备工艺:化学气相渗透法和液相浸渍法。形成碳基体的先驱物有用于化学气相沉积的碳氢化合物,如甲烷、丙烯、天然气等;有用于液相浸渍的热固性树脂,如酚醛树脂、糖醛树脂等,热塑性沥青如煤沥青、石油沥青。化学气相渗透(CVI)工艺就是把碳纤维织物预制体放入专用CVI炉中,加热至所要求的温度,通入碳氢气体,这些气体分解并在织物的碳纤维周围和空隙中沉积上碳。根据制品的厚度、所要求的致密化程度与热解碳的结构来选择CVI工艺参数。化学气相渗透工艺又包括等温CVI法、热梯度CVI法、脉冲压力CVI法、微波CVI法,以及等离子体强化等种类,可根据对产品的性能要求选择不同的方法。
3 碳基复合材料的性能
3.1 力学性能
碳基复合材料属于脆性材料,断裂破坏时断裂应变很小。碳基复合材料的强度与增强纤维的方向和含量密切相关,在平行于纤维轴向的方向上拉伸强度和模量较高,在偏离纤维轴向的方向上拉伸强度和模量较低。碳基复合材料的强度同样受界面结合的影响较大。碳纤维与碳基体的界面结合过强,碳基复合材料发生脆性断裂,拉伸强度偏低,剪切强度较好。界面强度过低基体不能把载荷传递到纤维,纤维容易拔出,拉伸模量和剪切强度降低。界面结合强度适中,使碳基复合材料具有较高的拉伸强度和断裂应变。
高温石墨化处理可显著提高碳基复合材料强度和模量,经石墨化处理后碳碳复合材料强度增加29.5%,模量增加119.2%。石墨化处理提高了材料的性能指标,但并未改变材料的损伤破坏模式(图1),仍是纤维脆性断裂,只是损伤的扩展阶段不同。
图1 3D编织碳基复合材料弯曲应力—应变曲线
材料的界面状况在石墨化处理后发生了变化,纤维与基体之间的结合明显弱化,基体碳层之间界面结合强度也明显的低于石墨化处理前(图2)。石墨化处理后的碳基复合材料表现出有纤维的拔出,纤维上仍包覆有基体,表明纤维与基体间结合较为适宜,热解碳层间结合较弱。
文档评论(0)