- 1、本文档共21页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
空间自相关.
全局空间自相关:Join Count算法空间虾神daxialu(虾神) · 2015-11-18 07:38ArcGIS里面,全局空间自相关只提供了一个Morans I方法,当然要说一招鲜吃遍天也是可以的,不过关于全局自相关还是有不少其他的方法的,这次给大家介绍一种更加简单并且容易理解的全局空间自相关方法:Join Count方法。这个方法最早是英国剑桥大学的著名地理学家Andrew D. Cliff 教授和美国乔治敦大学的J. Keith Ord提出,就是下面的两位老帅哥:后面这个为J.Keith Ord更是厉害,以前说的 General G 指数也有他的一份。Join Counts这种算法对比那些公式复杂到抓狂的各种算法来说,简单到让人眼前一亮,下面我们来看看他的原理:首先从他的名字上来看,就能够猜出是怎么完的了。这个算法,就是对两个要素之间的连接类型进行计数,然后根据这个计数来判定聚类还是离散的。这种类似一种描述二进制之间关系的方式,如黑/白两种颜色,他们之间的关系就有三种:黑-黑(BB)、白-白(WW)、黑-白(BW)。如下图:三种情况的概率,就如下所示:(有数学恐惧症的同学请略过)算出来之后,他们的预期值是:算出三种值来之后,就可以进行比较了,比较的结果如下:如果BW比我们所期望的数值要低,表示正空间自相关。如果BW比我们所期望的数值要高,表示负空间自相关。如果BW比我们所期望的数值均等,表示随机。如下图所示:最后,我们来看看分布用我们最属性的Morans I和join Counts两种方法计算出来的全局空间自相关的结果:首先是数据,我们选用2004年美国大选中,小布什的得票率来计算,数据如下图:通过Morans I方法技术出来的结果如下:下面逐条解答一下上面的各项内容:数据:data数据集里面的小布什得票数空间权重(空间关系概念化):这里是面数据,用的是共点共边就被认为是近邻,用的是“Queens Case”(这点看不懂的,请去看白话空间统计之五:空间关系概念化(下)里面的描述)Morans I?统计标准偏差:51.731(统计标准偏差:一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。)p值:2.2e-16,置信度为99%以上,极高置信度区间,说明这份数据效果非常好。alternative hypothesis(备择假设亦称研究假设,统计学的基本概念之一。假设检验中需要证实的有关总体分布的假设,它包含关于总体分布的一切使原假设不成立的命题。):极大Morans I?统计指数:0.5565174275期望值:-0.0003219575方差:0.0001158676因为Morans I的指数是在-1 ——1 之间,越靠近1的,聚集趋势就越明显,所以根据以上数据,我们可以判定,小布什的得票获胜区域(或者失败区域)有明显的聚集趋势,也就是说,如果他在某个区域获胜,那么在该区域旁边的区域也极有可能获胜,反之亦然。下面是通过Join Count方法进行计算的结果:因为Join Count只能处理二值化数据,所以第一句就是将值化为二值化,布什获胜的,设置为1,失败的设置为0.结论解读如下:0:0——失败区域与失败区域关联的计数为130,期望值为54,方差是6.7,Z值是29.4661:1——获胜区域与获胜区域关联的计数为1111,期望值为1030,方差是12.6,Z值是22.5961:0——获胜区域与失败区域关联的计数为311,期望值为472,方差是29.47,Z值是-29.645Jtot——不同颜色的计数值计数为311,期望值为472,方差是29.94,Z值为-29.413从上面的数据可以看出,BB和WW都明显出现了计数值远高于期望值,所以数据呈现聚类模式,其中BB的值方差要小于WW值的方差,所以小布什的获胜选区的聚类程度要略大于失败选区的聚类程度。而BW的计数小于期望值,可以认为,不存在离散趋势了。检验统计量表明,BB和WW都是正值,说明我们假设的值比较贴合实际运算结果,是一份比较可信的运算过程。最后Jtot?是所谓的“不同颜色”也就是说,离散偏随机的计数,可以看见与BW的值非常贴近,所以这份数据也表明了随机的可能也是比较低的。白话空间统计十七:聚类和异常值分析(Anselin Local Morans I)/tag/666.html \t _blank空间/tag/2663.html \t _blank统计/author/gh_868ed5270b51.html \o 点击进入虾神daxialu的个人主页虾神daxialu(虾神) · 2015-09-15 17:41前面我们聊的各种指数,无论是莫兰指
文档评论(0)