- 1、本文档共18页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
边缘检测效果对比.
图像边缘检测算法效果对比
目录
一、引言
二、 边缘检测
2.1 Roberts 梯度算子
2.2 Prewitt算子
2.3 Sobel算子
2.4 Laplace 算子
2.5 Canny 算子
三、 几种算子的比较
3.1 基于Matlab 的边缘检测算法实现
3.2 算法比较
四、 最小二乘支持向量机在边缘检测中的应用
五、结束语
六、参考文献
摘要: 边缘是图像最基本的特征, 包含图像中用于识别的有用信息, 边缘检测是数字图像处理中基础而又重要的课题。文章具体考察了5 种经典常用的边缘检测算子以及最小二乘支持向量机提取边缘检测算子,并运用Matlab 进行图像处理结果比较。梯度算子简单有效, LOG 算法和Canny 边缘检测器能产生较细的边缘。最小二乘支持向量机结合图像的梯度和零交叉信息, 选取一定的参数条件, 可以获得比Canny 方法更好的性能。
一、引言
图像边缘是图像最基本的特征之一,往往携带着一幅图像的的大部分的信息。而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处。这些点给出了图像轮廓的位置,这些轮廓常常是在图像处理时所需要的非常重要的一些特征条件,这就需要对一幅图像检测并提取出它的边缘。而边缘检测算法则是处理问题中经典技术难题之一,它的解决对于进行高层次的特征描述、识别和理解等有着重大的影响;又由于边缘检测在许多方面都有着非常重要的使用价值,所以人们一直在致力于研究和解决如何构造出具有良好性质级好的效果的边缘检测算子的问题。
由于边缘检测在图像处理系统中占有重要的作用, 所以其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能, 并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合, 并且在实际图像中存在着不同程度的噪声, 各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子, 边缘检测的传统方法包括Kirsch, Prewitt, Sobel, Roberts, Robins, Mar -Hildreth边缘检测方法以及Laplacian-Gaussian (LOG) 算子方法和Canny 最优算子方法等。
本文主要讨论其中5 种边缘检测算法以及最小二乘支持向量机进行图像边缘处理算法的性能, 并使用Matlab7.8 图像处理工具以实际图像为例对这些方法进行比较。
二、 边缘检测
在Marr的视觉计算理论框架中,抽取二维图像上的边缘、 角点、纹理等基本特征,是整个系统框架中的第一步。这些特征所组成的图称为基元图。Yuille等指出, 在不同“尺度”意义下的边缘点,在一定条件下包含了原图像的全部信息。图画出了一幅图像中的边缘点,仅仅根据这些边缘点,就能识别出三维物体, 可见边缘点确实包含了图像中的大量信息。
(1) 空间曲面上的不连续点。如标为A的边缘线,这些边缘线为两个不同曲面的或平面的交线,该点处物体表面的法线方向不连续,在A类边缘线的两边, 图像的灰度值有明显的不同。
(2)B类边缘线。B类边缘线是由不同材料或相同材料不同颜色产生的。图中桌面由两种不同材料组成,由于它们对光的反射系数不同, 使B边缘线的两侧灰度有明显不同。
(3)C类边缘线。C类边缘线是物体与背景的分界线。如图中圆柱上有两条C类边缘线,这类边缘线一般称为外轮廓线。在C类边缘点上,三维物体表面的法线方向是连续的,出现边缘点是由于从一定视角看物体时,C类边界点是物体与背景的交界处。由于物体与背景在光照条件与材料反射系数等方面差异很大, 因此在C类边缘两侧, 图像的灰度也有很大差异。图中标以C′的边缘,即是物体与背景的交界处, 也是物体上表面法线的不连续处,但引起它两侧灰度跃变的原因是前者。
(4)D边缘。D是阴影引起的边缘。由于物体表面某一部分被另一物体遮挡,使它得不到光源的照射,从而引起边缘点两侧灰度值有较大的差异。
结论:边缘是图像的灰度不连续处,或灰度急剧变化的地方
边缘检测与微分运算。
如前所述,边缘点是信号“变化剧烈”的地方,但这么说并不准确,需要定义一个准确的边缘数学模型。以一维信号为例, 下图(b)是一种阶跃信号,我们当然认为A点处为边缘点。在实际情况中,物理信号不可能有理想的突变, 而是图(b)所示的逐渐增大的信号,对图(b)中所示A、B、C三点, 一般称B点为边缘点。在图(c)和图(d)中,如果台阶比较窄,即可以认为B点为边缘点,也可以认为该信号有两个边缘点A与C。
图像中不同类型的边界
(a)边界 (b)线 (c)折
文档评论(0)