网站大量收购闲置独家精品文档,联系QQ:2885784924

[基于MATLAB的车牌识别系统含源文件.doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[基于MATLAB的车牌识别系统含源文件

基于MATLAB的车牌识别系统 目 录 2 一、车牌识别研究背景及现状分析: 2 二、设计原理: 2 三、设计步骤 3 (一)、预处理及边缘提取 3 (二)、牌照的定位和分割 6 (三)、字符的分割与归一化 8 (四)、字符的识别 9 三、设计结果及分析 11 四、总结 12 五、参考文献 12 基于MATLAB的 内容摘要 本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。 关键词:汽车牌照 车牌提取 字符分割 字符识别 一.车牌识别的研究背景及现状分析 (一)研究背景 随着我国经济的发展,综合实力的增强和城市化进程的加快,国内各大城市交通智能交通城市交通城市交通智能交通通信车牌识别智能交通 三、设计步骤 车牌识别过程大体可以分为4个步骤:图像预处理,车牌定位和分割、车牌字符的分割和车牌字符识别。 (一)、预处理及边缘提取 一般情况下,采集到的图像有由于光线过强,或者偏弱都会不理想的情况,这些都会对后续的图像处理产生影响。以及车速的不稳定等因素都会不同程度地影响图像效果,出现模糊、歪斜和缺损等严重缺陷,车牌字符边界模糊、细节不清、笔画断开、粗细不均等现象,从而影响车牌区域分割与字符识别的工作,所以识别前需要对原始图象进行预处理。 图2 预处理及边缘提取流程图 1、图象的采集与转换 现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色B 通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。因为蓝色(255,0,0)与白色(255,255,255)在B 通道中并无区分,而在G、R 通道或是灰度图象中并无此便利。同理对白底黑字的牌照可用R 通道,绿底白字的牌照可以用G 通道就可以明显呈现出牌照区域的位置,便于后续处理。原图、灰度图及其直方图见图2与图3。对于将彩色图象转换成灰度图象时,图象灰度值可由下面的公式计算: G=0.110B+0.588G+0.302R (1) G= (2) 图3 图4 2、边缘提取 边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是很有必要的。增强图象对比度度的方法有:灰度线性变换、图象平滑处理等。 (1)灰度校正 由于牌照图象在拍摄时受到种种条件的限制和干扰,图象的灰度值往往与实际景物不完全匹配,这将直接影响到图象的后续处理。如果造成这种影响的原因主要是由于被摄物体的远近不同,使得图象中央区域和边缘区域的灰度失衡,或是由于摄像头在扫描时各点的灵敏度有较大的差异而产生图象灰度失真,或是由于曝光不足而使得图像的灰度变化范围很窄。这时就可以采用灰度校正的方法来处理,增强灰度的变化范围、丰富灰度层次,以达到增强图象的对比度和分辨率。我们发现车辆牌照图象的灰度取值范围大多局限在r=(50,200)之间,而且总体上灰度偏低,图象较暗。根据图象处理系统的条件,最好将灰度范围展开到s=(0,255)之间,为此我们对灰度值作如下的变换: s = T(r) r=[r min,,r max] 使得S∈[Smin, Smax],其中,T为线性变换: (3) 若 r(50,200)、s(0,2

文档评论(0)

xufugen + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档