网站大量收购闲置独家精品文档,联系QQ:2885784924

[形变热处理.docVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[形变热处理

摘要: 形变热处理是形变强化和相变强化相结合的一种综合强化工艺,通过利用金属材料在形变过程中组织结构的改变,影响相变过程和相变产物,以得到所期望的组织与性能。形变热处理通过使钢的母相发生如下变化:在再结晶温度以上形变,道次形变量如超过再结晶临界变形量,则母相发生动态或静态的再结晶,使晶粒得到细化;如进行多道次形变,则发生多次再结晶,母相的晶粒显著细化;在材料的再结晶温度以下形变,母相不发生再结晶,而产生大量晶体缺陷,或仅发生回复过程,形成多边化亚结构;形变诱发第二相由母相中析出,析出的第二相又与位错交互作用,使母相的成分与结构皆发生变化,达到形变强化和相变强化的目的。 关键字: 回复 再结晶 晶体缺陷 位错 第二相 正文 形变热处理由于将金属材料的成形与获得材料的最终性能结合在一起,简化了生产过程,节约能源消耗及设备投资,同时与普通热处理比较,形变热处理后金属材料能达到更好的强度与韧性相配合的机械性能。有些钢特别是微合金化钢,唯有采用形变热处理才能充分发挥钢中合金元素的作用,得到强度高、塑性好的性能。例如09MnNb钢正常轧制后屈服强度(σs)为39kgf/mm2,-40℃梅氏(Mesnager)冲击值(αK)为0.63kgf·m/cm2;经正火后,-40℃的αK可提高到6~8kgf·m/cm2,而σs下降5kgf/mm2;如采用控制轧制(形变热处理工艺之一),强度与韧性都可进一步提高:αs约45kgf/mm2,-40℃的αK可达6~12kgf·m/cm2。 正是由于这样的原因,形变热处理已广泛应用于生产金属与合金的板材、带材、管材、丝材,和各种零件如板簧、连杆、叶片、工具、模具等。 1.形变热处理工艺中的塑性变形 形变热处理工艺中的塑性变形(范性形变),可以用轧、锻、挤压、拉拔等各种形式;与其相配合的相变有共析分解、马氏体相变、脱溶等。形变与相变的顺序也多种多样:有先形变后相变;在相变过程中进行形变;也可在某两种相变之间进行形变。 较普遍采用形变热处理工艺如附表中所示。 2.形变对母相的作用   2.1对铁素体-珠光体型相变的作用 形变后产生了再结晶的细奥氏体晶粒,使冷却转变后的铁素体也相应得到细化。形变后未发生再结晶的奥氏体中的大量晶体缺陷,为此后铁素体的转变提供了大量形核位置,并使铁素体形核的热激活过程更容易进行,这两者使转变后的铁素体晶粒细化;此外形变的奥氏体有加速扩散过程,加速铁素体转变速度,提高铁素体形成的温度等作用(见表中类型2)。 如果在奥氏体中存在有形变诱发析出的第二相,则对细化铁素体晶粒更为有效。低碳,含有微量(〈0.01%)的Nb、V、 Ti合金元素的微合金化钢,就属于这类情况。形变使奥氏体产生多边化亚晶,在奥氏体晶界堆积较多的位错,形变又诱发析出Nb(CN)或其他合金元素的碳、氮化物。细小的第二相首先在奥氏体晶界处及亚晶界上析出,并钉扎亚晶界及晶界,使亚晶的长大和晶界的迁移都受到阻碍,造成奥氏体再结晶核心难以在该处产生,即使产生了也不易长大,从而抑制了奥氏体再结晶的发生。只有给予更大变形量,进一步提高再结晶的驱动力时,才会发生再结晶,结果,使再结晶后的奥氏体晶粒比普通低碳钢细小。大约在950℃以下,形变诱发析出的第二相,能完全阻止奥氏体发生再结晶,这样就相对地扩大了奥氏体未再结晶的温度范围,有利于增大未再结晶区的形变量,使奥氏体产生更大量的晶体缺陷。在奥氏体再结晶区及未再结晶区连续变形,得到的是细小的奥氏体晶粒及高密度的晶体缺陷。这样的奥氏体转变后形成的铁素体晶粒细小而均匀,生产上可得到 5μm直径的铁素体。 仅就晶粒细化这一项,就使钢的屈服强度提高10~15kgf/mm2,同时提高钢的低温韧性,使韧性-脆性转变温度下降到-70℃。铁素体晶粒的细化还可以抵销由于相间沉淀及铁素体中析出的第二相所造成的脆性,保留其沉淀强化作用,在具有良好低温韧性的基础上,进一步提高钢的屈服强度。 2.2对淬火时马氏体、贝氏体相变的作用 再结晶的奥氏体仅能细化所转变的马氏体或贝氏体组织。形变而未再结晶的奥氏体,对淬火时的马氏体和贝氏体转变的作用却是多方面的(见附表中类型1、3、5 )。 奥氏体中的大量晶体缺陷使以共格方式长大的马氏体、贝氏体晶体长大受阻,使转变后的组织得到细化。奥氏体中的晶体缺陷可被其转变的马氏体、贝氏体所继承,使转变后的马氏体或贝氏体组织的位错密度高于一般热处理形成的马氏体和贝氏体的位错密度。当奥氏体在形变过程产生形变诱发第二相析出时,这种现象尤为突出。形变诱发析出的第二相质点,钉扎了奥氏体已有的可动位错;在进一步形变时,促进奥氏体增殖大量新的位错,大大增加奥氏体中的位错密度,相应地增加转变后的马氏体的位错密度。马氏体、贝氏体中位错

文档评论(0)

xufugen + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档