《MATLAB中FFT的使用方法.docVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《MATLAB中FFT的使用方法

说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = 39.0000?????????? -10.7782 + 6.2929i??????? 0 - 5.0000i?? 4.7782 - 7.7071i?? 5.0000???????????? 4.7782 + 7.7071i??????? 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128;?? %采样频率和数据点数 n=0:N-1;t=n/fs;?? %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N);??? %对信号进行快速Fourier变换 mag=abs(y);???? %求得Fourier变换后的振幅 f=n*fs/N;??? %频率序列 subplot(2,2,1),plot(f,mag);?? %绘出随频率变化的振幅 xlabel(频率/Hz); ylabel(振幅);title(N=128);grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel(频率/Hz); ylabel(振幅);title(N=128);grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N);?? %对信号进行快速Fourier变换 mag=abs(y);?? %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel(频率/Hz); ylabel(振幅);title(N=1024);grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel(频率/Hz); ylabel(振幅);title(N=1024);grid on; 运行结果: fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成 分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给 出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表 现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。 例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制: (1)数据个数N=32,FFT所用的采样点数NFFT=32; (2)N=32,NFFT=128; (3)N=136,NFFT=128; (4)N=136,NFFT=512。 clf;fs=100; %采样频率 Ndata=32; %数据长度 N=32; %FFT的数据长度 n=0:Ndata-1;t=n/fs;?? %数据对应的时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);?? %时间域信号 y=fft(x,N);?? %信号的Fourier变换 mag=abs(y);??? %求取振幅 f=(0:N-1)*fs/N; %真实频率 subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出

文档评论(0)

1789811832 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档