网站大量收购独家精品文档,联系QQ:2885784924

中科院学习课件模式识别第一.ppt

  1. 1、本文档共59页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
中科院学习课件模式识别第一

模式识别过程实例 在传送带上用光学传感器件对鱼按品种分类 鲈鱼(Seabass) 品种 鲑鱼(Salmon) 识别过程 数据获取:架设一个摄像机,采集一些样本图像,获取样本数据 预处理:去噪声,用一个分割操作把鱼和鱼之间以及鱼和背景之间分开 识别过程 特征提取和选择:对单个鱼的信息进行特征选择,从而通过测量某些特征来减少信息量 长度 亮度 宽度 鱼翅的数量和形状 嘴的位置,等等 … 分类决策:把特征送入决策分类器 模式分类器的获取和评测过程 数据采集 特征选取 模型选择 训练和测试 计算结果和复杂度分析,反馈 训练和测试 训练集:是一个已知样本集,在监督学习方法中,用它来开发出模式分类器。 测试集:在设计识别和分类系统时没有用过的独立样本集。 系统评价原则:为了更好地对模式识别系统性能进行评价,必须使用一组独立于训练集的测试集对系统进行测试。 实例:统计模式识别 19名男女同学进行体检,测量了身高和体重,但事后发现其中有4人忘记填写性别,试问(在最小错误的条件下)这4人是男是女?体检数值如下: 实例:统计模式识别(续) 待识别的模式:性别(男或女) 测量的特征:身高和体重 训练样本:15名已知性别的样本特征 目标:希望借助于训练样本的特征建立判别函数(即数学模型) 实例:统计模式识别(续) 由训练样本得到的特征空间分布图 实例:统计模式识别(续) 从图中训练样本的分布情况,找出男、女两类特征各自的聚类特点,从而求取一个判别函数(直线或曲线)。 只要给出待分类的模式特征的数值,看它在特征平面上落在判别函数的哪一侧,就可以判别是男还是女了。 实例:句法模式识别 问题:如何利用对图像的结构信息描述,识别如下所示图片: 实例:句法模式识别(续) 将整个场景图像结构分解成一些比较简单的子图像的组合; 子图像又用一些更为简单的基本图像单元来表示,直至子图像达到了我们认为的最简单的图像单元(基元); 所有这些基元按一定的结构关系来表示,利用多级树结构对其进行描述(这种描述可以采用形式语言理论)。 实例:句法模式识别(续) 多级树描述结构 实例:句法模式识别(续) 训练过程: 用已知结构信息的图像作为训练样本,先识别出基元(比如场景图中的X、Y、Z等简单平面)和它们之间的连接关系(例如长方体E是由X、Y和Z三个面拼接而成),并用字母符号代表之; 然后用构造句子的文法来描述生成这幅场景的过程,由此推断出生成该场景的一种文法。 实例:句法模式识别(续) 识别过程: 先对未知结构信息的图像进行基元提取及其相互结构关系的识别; 然后用训练过程获得的文法做句法分析; 如果能被已知结构信息的文法分析出来,则该幅未知图像与训练样本具有相同的结构(识别成功),否则就不是这种结构(识别失败)。 本门课程的主要内容 第一章 概论 第二章 聚类分析 第三章 判别函数 第四章 统计判别 第五章 特征选择和提取 第六章 神经网络 第七章 句法模式识别 第八章 模糊模式识别 第九章 模式识别应用 相关数学概念 随机向量及其分布 随机向量 如果一个对象的特征观察值为{x1, x2, …, xn},它可构成一个n维的特征向量值x,即 x = (x1, x2, …, xn)T 式中, x1, x2, …, xn为特征向量x的各个分量。 一个特征可以看作n维空间中的向量或点,此空间称为模式的特征空间Rn 。 相关数学概念 随机向量及其分布 随机向量 在模式识别过程中,要对许多具体对象进行测量,以获得许多次观测值。 每次观测值不一定相同,所以对许多对象而言,各个特征分量都是随机变量,即许多对象的特征向量在n维空间中呈随机性分布,称为随机向量。 相关数学概念 随机向量及其分布 随机向量的参数 数学期望和方差 协方差矩阵 [例:求随机变量的数学期望和协方差矩阵] 相关数学概念 正态分布 一维正态密度函数 相关数学概念 正态分布 多维正态密度函数 小结 模式和模式识别的概念 模式识别的发展简史和应用 模式识别的主要方法 模式识别的系统和实例 几个相关的数学概念 人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。 * 模式识别 - 概念、原理(算法)及其应用 黄庆明 中国科学院大学计算机学院 qmhuang@ucas.ac.cn / qmhuang@jdl.ac.cn 助教:成仲炜(zwcheng@jdl.ac.cn)

文档评论(0)

little28 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档