鉛酸电池基础技术资料汇总.docVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
鉛酸电池基础技术资料汇总

铅酸蓄电池用料的理论计算 PbSO4在H2SO4溶液中的溶解度 酸比重(g/L) 硫酸鉛溶解度(mg/L) 1.00 5.0 1.01 5.4 1.02 5.7 1.04 6.2 1.05 6.6 1.06 6.6 1.08 6.5 1.10 6.3 1.11 6.1 1.12 5.7 1.14 5.0 1.16 4.1 1.20 3.0 1.22 2.7 1.24 2.2 1.26 2.0 1.28 1.7 1.30 1.5 1.34 1.2 1.36 1.1 1.40 1.1 1.44 1.1 1.48 1.2 1.50 1.3 1.52 1.4 1.56 1.6 1.60 1.8 阀控铅酸蓄电池的充放电特性 铅酸蓄电池以一定的电流充、放电时,其端电压的变化如下图: 1. 放电中电压的变化 电池在放电之前活性物质微孔中的硫酸浓度与极板外主体溶液浓度相同,电池的开路电压与此浓度相对应。放电一开始,活性物质表面处(包括孔内表面)的硫酸被消耗,酸浓度立即下降,而硫酸由主体溶液向电极表面的扩散是缓慢过程,不能立即补偿所消耗的硫酸,故活性物质表面处的硫酸浓度继续下降,而决定电极电势数值的正是活性物质表面处的硫酸浓度,结果导致电池端电压明显下降,见曲线OE段。 随着活性物质表面处硫酸浓度的继续下降,与主体溶液之间的浓度差加大,促进了硫酸向电极表面的扩散过程,于是活性物质表面和微孔内的硫酸得到补弃。在一定的电流放电时,在某一段时间内,单位时间消耗的硫酸量大部分可由扩散的硫酸予以补充,所以活性物质表面处的硫酸浓度变化缓慢,电池端电压比较稳定。但是由于硫酸被消耗,整体的硫酸浓度下降,又由于放电过程中活性物质的消耗,其作用面积不断减少,真实电流密度不断增加,过电位也不断加大,故放电电压随着时间还是缓慢地下降,见曲经EFG段。 随着放电继续进行,正、负极活性物质逐渐转变为硫酸铅,并向活性物质深处扩展。硫酸铅的生成使活化物质的孔隙率降低,加剧了硫酸向微孔内部扩散的困难,硫酸铅的导电性不良,电池内阻增加,这些原因最后导致在放电曲线的G点后,电池端电压急剧下降,达到所规定的放电终止电压。 2 充电中的电压变化 在充电开始时,由于硫酸铅转化为二氧化铅和铅,有硫酸生成,因而活性物质表面硫酸浓度迅速增大,电池端电压沿着OA急剧上升。当达到A点后,由于扩散,活性物质表面及微孔内的硫酸浓度不再急剧上升,端电压的上升就较为缓慢(ABC)。这样活性物质逐渐从硫酸铅转化为二氧化铅和铅,活性物质的孔隙也逐渐扩大,孔隙率增加。随着充电的进行,农渐接近电化学反应的终点,即充电曲线的C点。当极板上所存硫酸铅不多,通过硫酸铅的溶解提供电化学氧化和还原所需的Pb2+极度缺乏时,反应的难度增加,当这种难度相当于水分解的难度时,即在充入电量70%时开始析氧,即副反应2H2O一O2+4H+4e,充电曲线上端电压明显增加。当充入电量达90%以后,负极上的副反应,即析氢过程发生,这时电池的端电压达到D点,两极上大量析出气体,进行水的电解过程,端电压又达到一个新的稳定值,其数值取决于氢和氧的过电位,正常情况下该恒定值约为2.6V。 阀控式铅酸蓄电池的自放电 1 自放电的原因 电池的自放电是指电池在存储期间容量降低的现象。电池开路时由于自放电使电池容量损失。 自放电通常主要在负极,因为负极活性物质为较活泼的海绵状铅电极,在电解液中其电势比氢负,可发生置换反应。若在电极中存在着析氢过电位低的金属杂质,这些杂质和负极活性物质能给成腐蚀微电池,结果负极金属自溶解,并伴有氢气析出,从而容量减少。在电解液中杂质起着同样的有害作用。一般正极的自放电不大。正极为强氧化剂,若在电解液中或隔膜上存在易于被氧化的杂质,也会引起正极活性物质的还原,从而减少容量。 2 自放电率 自放电率用单位时间容量降低的百分数表示。 式中Ca--电池存贮前的容量(Ah) Cb--电池存贮后的容量(Ah) T一电池贮存的时间,常用天、月计算。 3 正极的自放电 正极的自放电是由于在放置期间,正极活性物质发生分解,形成硫酸铅并伴随着氧气析出,发生下面一对轭反应: 同时正极的自放电也有可能由下述几种局部电池形成引起:   在电极的上端和下端,以及电极的孔隙和电极的表面处酸的浓度不同,因而电极内外和上下形成了浓差电池。处在较稀硫酸区域的二氧化铅为负极,进行氧化过程而析出氧气;处在较浓硫酸区域的二氧化铅为正极,进行还原过程,二氧化铅还原为硫酸铅。这种浓差电池在充电终了的正极和放电终了的正极都可形成,因此都有氧析出。但是在电解液浓度趋于均匀后,浓差消失,由此引起的自放电也就停止了。 正析自放电的速度受板栅合金组成和电解液浓度的影响,对应于硫酸浓度出现不同的极大值。

文档评论(0)

fglgf11gf21gI + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档