10gbps網络背板设计关键.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
10gbps網络背板设计关键

10Gbps网络背板设计关键 工程师们必须采取适当的技术与设计技巧,使其在数据速率接近10Gbps时,仍能达到可接受的误码率。而OEM厂商同时也面对该为现有的背板上采用何种强化技术,本文将有进一步的说明。 随着对带宽需求持续成长,大量投资在交叉式升级(forklift upgrade)上并非最好的解决方法,IT经理们必需在现有设备上挖掘出更好的效能与更长的产品寿命。这让系统设计人员别无选择,只能寻找新方法来利用已经投资在背板(backplane)技术上的每一分钱。 表面上看起来,最简单的解决方法似乎是藉由减少每次数据带宽需求增加的单位间隔时间来延长现有铜背板的寿命。但不幸的是,更高速率的系统所衍生出的损耗、反射、串扰与偏斜等问题,将为试图提升其上一代系统性能的OEM厂商们带来更多不同于以往的重大挑战。 为解决当前的背板困境,我们必须先解决信号完整性问题,信号完整性问题会在数据速率达3Gbps到10Gbps的范围内造成像表层效应、电介值损耗、反射、串扰、符号间干扰(Inter-Symbol Interference简称ISI),以及内部对偏斜(intra-pair skew)等严重问题(参考附件)。将现有的I/O速度提高两级,或是利用通用的铜缆线均衡器,都无法有效解决上述问题,因为这些技术主要是针对克服低速背板上常见的讯息信道损耗所设计的。 现今的工程师们必须采取一些适当的技术与设计技巧,使其在数据速率接近10Gbps时,仍能达到可接受的误码率(Bit Error Rates, BER)。其中,最有效的应该是称为脉冲振幅调变(Pulse Amplitude Modulation, PAM)的多准位信号技术,以及我们熟知的判断反馈均衡器(Decision Feedback Equalization,DFE)自适应均衡技术。 OEM厂商所面对的另一个问题,是要确定该在为其现有的背板上采用何种强化技术。是要制作一种客制化的ASIC(特殊应用集成电路),或是用现成的ASSP(特殊应用标准产品)就能满足设计呢?答案将取决于相关的经济规模以及系统的特性和规格。 讯息信道损害(Channel Impairments) 背板是由许多不同组件组成的复杂环境,目前已经对超过5Gbps以上的信号速率产生了重大挑战。如图1所示,其信号路径包含了超过11种的不同组件,每一颗组件均各自拥有其阻抗变化。此外,在信号路径中还有超过10个的过孔,每一个过孔都同时具有贯穿(through)与残段(stub)成份,这导致了额外的电位阻抗不连续性与谐振极点。其结果是此环境中的讯息信道传输函数的变化会非常显著。当奈奎斯特(Nyquist)频率低于2GHz时,尽管讯息信道存在着一些差异,但过孔与阻抗不连续性(反射)的现象却不是很明显。在2GHz以上时,根据信号层(以及过孔的贯穿/残段比率)、走线长度,以及电介值材料的不同,各讯息信道将呈现出很大的差异。要在这种讯息信道特性变化极大的环境中实现高速数据速率,对高速串行连接而言是非常大的挑战。 图1:一个标准的背板系统。其中的每一个主动与背动组件都提出了不同的信号挑战。此外,还必须考虑到制造时的变化。 在高频背板中,两种更具破坏性的讯息信道损害是符号间干扰(ISI)与反射。它们都各自有其来源及效应,然而,自适应均衡技术的创新应用将同时克服这两种不良效应。 符号间干扰(Inter-symbol interference) 讯息信道的其中一种显著效应就是会在邻近符号间引发ISI的单位元响应‘扩展’ 。当在频域中考虑ISI时,背板讯息信道的表现就像一个低通滤波器,此处的高频组件会呈现衰减,而低频信号则不受影响。(见图2) 图2:(a) – 背板S21曲线;其表现就像一个低通滤波器。 (b) – 反向频率均衡器S21曲线;其表现就像一个高通滤波器; (c) – 整合的S21曲线;转换函数拥有平坦性及理想的频率范围。 透过分析讯息信道的单位元响应,我们可以在时域中观察ISI。图3展示了在简单的101数据模式中从有损号的讯息信道至接收器的传输所出现的ISI破坏性效应。错误的结果是由来自蓝波形的‘前体(pre-cursor)’ISI,加上来算绿波形的‘后体(post-cursor)’ISI所归纳出的,其总和会产生一个明显高于0/1电压阀值的‘0’位电压。 图3:在输入到讯息信道(黑色),以及输出到讯息信道(红色)时,一个无均衡的简单101数据模式。 其输出情况是分别会输出到两个分离的单位元响应(绿色、蓝色),显示出ISI是如何感应到错误的发生。 消除ISI的最常用方法是反向频率均衡。在背板链接环境中

文档评论(0)

fv45ffsjjI + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档