- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
中国的轿车生产是否与GDP、城镇居民人均可支配收入、城镇居民家庭恩格尔系数、私人载客汽车拥有量、公路里程等都有密切关系?如果有关系,它们之间是种什么关系?关系强度如何?
分析轿车生产量与私人载客汽车拥有量之间的关系:
首先,求的因变量轿车生产量y和自变量私人载客汽车拥有量x1的相关系数r=0.992018,说明两者间存在一定的线性相关关系且正相关程度很强。
然后以轿车生产量为因变量y,私人载客汽车拥有量x1为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.984101看出,所建立的回归模型对样本观测值的拟合程度很好;
②估计出的样本回归函数为:?=1.775687+0.206783 x1,说明私人载客汽车拥有量每增加1万辆,轿车生产量增加2067.83辆;
③由上表中a和的p值分别是0.709481543和6.60805E-15,显然a的p值大于显著性水平α=0.05,不能拒绝原假设α=0,而的p值远小于显著性水平α=0.05,拒绝原假设β=0,说明私人载客汽车拥有量对轿车生产量有显著影响。
分析轿车生产量与城镇居民家庭恩格尔系数之间的关系:
首先,求的因变量轿车生产量y和自变量城镇居民家庭恩格尔系数x2的相关系数r=-0.77499,说明两者间存在一定的线性相关关系但负相关程度一般。
然后以轿车生产量为因变量y,城镇居民家庭恩格尔系数x2为自变量进行一元线性回归分析,结果如下:
由回归统计中的R=0.600608看出,所建立的回归模型对样本观测值的拟合程度一般,综合其相关系数值可知此二者关系不太符合所建立的线性模型,说明二者间没有密切的线性相关关系。
分析轿车生产量与公路里程之间的关系:
首先,求的因变量轿车生产量y和自变量公路里程x3的相关系数r=0.941214,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,公路里程x3为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.885883看出,所建立的回归模型对样本观测值的拟合程度较好;
②估计出的样本回归函数为:?=-125.156+1.403022 x3,说明公路里程每增加1万公里,轿车生产量增加1.403022万辆;
③由上表中a和的p值分别是5.64E-05和1.82E-08,显然a和的p值均远小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明公路里程对轿车生产量有显著影响。
分析轿车生产量与GDP之间的关系:
首先,求的因变量轿车生产量y和自变量GDP x4的相关系数r=0.939995,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,GDP x4为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.88359看出,所建立的回归模型对样本观测值的拟合程度较好;
②估计出的样本回归函数为:?=-70.7127+0.001829x4,说明GDP每增加1亿元,轿车生产量增加18.29辆;
③由上表中a和的p值分别是0.001534和2.11E-08,显然a和的p值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明GDP对轿车生产量有较显著影响。
分析轿车生产量与城镇居民人均可支配收入x5之间的关系:
首先,求的因变量轿车生产量y和自变量城镇居民人均可支配收入x5的相关系数r=0.917695,说明两者间存在一定的线性相关关系且正相关程度较强。
然后以轿车生产量为因变量y,城镇居民人均可支配收入x5为自变量进行一元线性回归分析,结果如下:
①由回归统计中的R=0.842164看出,所建立的回归模型对样本观测值的拟合程度较好;
②估计出的样本回归函数为:?=-92.9054+0.032928x5,说明城镇居民人均可支配收入每增加1元,轿车生产量增加329.28辆;
③由上表中a和的p值分别是0.001444和2.12E-07,显然a和的p值均小于显著性水平α=0.05,拒绝原假设α=0、β=0,但由于β对两者的影响更为显著,所以可以说明城镇居民人均可支配收入对轿车生产量有显著影响。
1
文档评论(0)