网站大量收购闲置独家精品文档,联系QQ:2885784924

遗传算法原理及其应用修改详解.ppt

  1. 1、本文档共92页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
遗传算法原理及其应用修改详解

遗传算法原理及其应用 中山大学智能交通研究中心 2010年4月 目 录 目 录 1.1 遗传算法的产生与发展 产生 早在50年代,一些生物学家开始研究运用数字计算机模拟生物的自然遗传与自然进化过程; 1963年,德国柏林技术大学的I. Rechenberg和H. P. Schwefel,做风洞实验时,产生了进化策略的初步思想; 60年代, L. J. Fogel在设计有限态自动机时提出进化规划的思想。1966年Fogel等出版了《基于模拟进化的人工智能》,系统阐述了进化规划的思想。 60年代中期,美国Michigan大学的J. H. Holland教授提出借鉴生物自然遗传的基本原理用于自然 和人工系统的自适应行为研究和串编码技术; 1967年,他的学生J. D. Bagley在博士论文中首次提出“遗传算法(Genetic Algorithms)”一词; 1975年,Holland出版了著名的“Adaptation in Natural and Artificial Systems”,标志遗传算法的诞生。 1.1 遗传算法的产生与发展 发展 70年代初,Holland提出了“模式定理”(Schema Theorem),一般认为是“遗传算法的基本定理”,从而奠定了遗传算法研究的理论基础; 1985年,在美国召开了第一届遗传算法国际会议,并且成立了国际遗传算法学会(ISGA,International Society of Genetic Algorithms); 1989年,Holland的学生D. J. Goldherg出版了“Genetic Algorithms in Search, Optimization, and Machine Learning”,对遗传算法及其应用作了全面而系统的论述; 1991年,L. Davis编辑出版了《遗传算法手册》,其中包括了遗传算法在工程技术和社会生活中大量的应用实例。 1.2 遗传学基本概念与术语 染色体(chromosome):遗传物质的载体; 脱氧核糖核酸(DNA):大分子有机聚合物,双螺旋结构; RNA 遗传因子(gene):DNA或RNA长链结构中占有一定位置的基本遗传单位; 基因型(genotype):遗传因子组合的模型; 表现型(phenotype):由染色体决定性状的外部表现; 个体(individual):指染色体带有特征的实体; 种群(population):个体的集合,该集合内个体数称为种群的大小; 进化(evolution):生物在其延续生存的过程中,逐渐适应其生存环境,使得其品质不断得到改良,这种生命现象称为进化; 适应度(fitness):度量某个物种对于生存环境的适应程度。对生存环境适应程度较高的物种将获得更多的繁殖机会,而对生存环境适应程度较低的物种,其繁殖机会就会相对较少,甚至逐渐灭绝; 选择(selection):指决定以一定的概率从种群中选择若干个体的操作 (实现优胜劣汰); 复制(reproduction):细胞在分裂时,遗传物质DNA通过复制而转移到新产生的细胞中,新的细胞就继承了旧细胞的基因; 交叉(crossover):在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合形成两个新的染色体。又称基因重组,俗称“杂交”; 变异(mutation):在细胞进行复制时可能以很小的概率产生某些复制差错,从而使DNA发生某种变异,产生出新的染色体,这些新的染色体表现出新的性状; 编码(coding):表现型到基因型的映射; 解码(decoding):从基因型到表现型的映射。 大象灰颜色皮肤为例 1.3 遗传算法的原理与特点 原理 遗传算法(GA)是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率有哪些信誉好的足球投注网站方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解: 在每一代,概据问题域中个体的适应度大小挑选个体; 并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。 这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。 基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 1.3 遗传算法的原理与特点 遗传算法的基本流程 1.3 遗传算法的原理与特点 特点 遗传算法的本质并行性。 首先,遗传算法并行的方式从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从

文档评论(0)

ee88870 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档