- 1、本文档共56页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基本遗传算法(GA) 1 基本遗传算法描述 遗传算法在自然与社会现象模拟、工程计算等方面得到了广泛应用。在各个不同的应用领域,为了取得更好的结果,人们对GA进行了大量改进,为了不至于混淆,我们把Holland提出的算法称为基本遗传算法,简称 GA、SGA(Simple Genetic Algorithm )、CGA(Canonical Genetic Algorithm),将其它的“GA类”算法称为GAs(Genetic Algorithms),可以把GA看作是GAs的一种特例。 1.1 基本遗传算法的构成要素 (1) 染色体编码方法 基本遗传算法使用固定长度的二进制符号串来表示群体中的个体,其等位基 因由二值符号集{0,1}组成。 初始群体中各个个体的基因值用均匀分布的随机数来生成。如: x;100111001000101101 就可表示一个个体,该个体的染色体长度是 l=18。 [例] 设 -3.0 ≤ x ≤ 12.1 , 精度要求 ?=1/10000,由公式: 2.2 个体适应度评价 如前所述,要求所有个体的适应度必须为正数或零,不能是负数。 (1) 当优化目标是求函数最大值,并且目标函数总取正值时,可以直接设定个体 的适应度F(X)就等于相应的目标函数值f(X),即: F(X)=f(X) (2) 对于求目标函数最小值的优化问题,理论上只需简单地对其增加一个负号就 可将其转化为求目标函数最大值的优化问题,即: min f(X)=max ( - f(X)) 但实际优化问题中的目标函数值有正也有负,优化目标有求函数最大值,也有 求函数最小值,显然上面两式保证不了所有情况下个体的适应度都是非负数这个 要求。 作业 说明遗传算法的基本思想和算法流程 说明遗传算法和梯度下降法的关系 利用遗传算法求出下面函数的极小值: z=2-exp[-(x2+y2)], x,y?[-5,+5] _ * (2) 个体适应度评价 基本遗传算法按与个体适应度成正比的概率来决定当前群体中每个个体遗传 到下一代群体中的机会多少。为正确计算这个概率,这里要求所有个体的适应 度必须为正数或零。这样,根据不同种类的问题,必须预先确定好由目标函数 值到个体适应度之间的转换规则,特别是要预先确定好当目标函数值为负数时 的处理方法。 (3) 遗传算子 基本遗传算法使用下述三种遗传算子: ? 选择运算:使用比例选择算子; ? 交叉运算:使用单点交叉算子; ? 变异运算:使用基本位变异算子。 (4) 基本遗传算法的运行参数 基本遗传算法有下述4个运行参数需要提前设定: ? M:群体大小,即群体中所含个体的数量,一般取为20 ~ 100。 ? T:遗传运算的终止进化代数,一般取为100 ~ 500 ? pc:交叉概率,一般取为0.4 ~ 0.99 ? pm:变异概率,一般取为 0.0001 ~ 0.1 [说明] 这4个运行参数对遗传算法的求解结果和求解效率都有一定的影响,但目前 尚无合理选择它们的理论依据。在遗传算法的实际应用中,往往需要经过多次试 算后才能确定出这些参数合理的取值大小或取值范围。 1.2 基本遗传算法的形式化定义 基本遗传算法可定义为一个7元组: GA= (M, F, s, c, m, pc, pm ) M——群体大小; F——个体适应度评价函数; s——选择操作算于; c——交叉操作算子: m——变异操作算于; pc——交叉概率; pm——变异概率; 1.3 基本遗传算法描述 Procedure GA Begin initialize P(0); t=0; while (t=T) do for i=1 to M do Evaluate
文档评论(0)