- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
剪枝网格采样的非平衡数据集分类算法.
摘 要
非平衡数据集分类问题是模式识别、机器学习和数据挖掘领域中的常见问题,也是热点问题,吸引着众多学者的眼球。非平衡数据集是指数据集类别之间存在倾斜,某一类别样本比其它类别样本要多。传统分类器为了追求高准确率,侧重于非平衡数据集中的多数类样本分类的准确性。而恰恰相反,非平衡数据集中的少数类样本往往是我们所要关心的,这时分类性能不仅要考虑分类精度高低,同时要考虑分类代价大小。传统分类器对这种非平衡数据的处理会更多关注多数类别的样本,导致大量重要的少数类别的样本错分。因此,研究非平衡数据处理问题是非常重要。
主要在数据预处理和算法两大层面上,在数据预处理层面上,学者们研究大体是对负类样本进行欠采样,去除噪声数据和远离分类面数据,对正类样本过采样,加入噪声数据以至于达到数据平衡,再采用已有分类器进行分类试图提高准确率。然而,去除数据还是加入数据,不同学者处理的方法也是不同的Abstract
Imbalanced data sets classification problem is common problems in the field of pattern recognition, machine learning and data mining as well as a hot issue. Imbalanced data set is a data set of categories because of the presence of skew, namely a kind of category samples more than other categories of sample. The traditional classifiers in order to pursue a high rate of accuracy focus on classification accuracy of the majority class samples of Imbalanced data sets, on the other hand the minority class samples of imbalanced data sets should be considered because of the cost of classification and its true information.. Therefore, research of Imbalanced data processing problem is very important.
At present, domestic and foreign scholars have obtained some achievements in data preprocessing and algorithms of two level about imbalanced data sets classification problem. Scholars are trying to improve the traditional algorithms and improve the classification performance in Imbalanced data set on the algorithm level. In the data pretreatment level, scholars generally remove the negative samples of noise data and separate from the classification of surface data in under-sampling, otherwise they add noise data to over-sampling data in order to balance. In a word , many methods are different on data reduction or data addition
In this paper, new sampling methods about imbalanced data sets classification are considered in order to prevent the important data loss from general under-sampling method on the basis of previous studies. Grid sampling method by pruning puts forward , namel
文档评论(0)