SPSS1(主成分分析)..doc

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
SPSS1(主成分分析).

利用SPSS进行主成分分析 以全国31个省市的8项经济指标为例,进行主成分分析。 第一步:录入或调入数据(图1)。 图1 原始数据(未经标准化) 第二步:打开“因子分析”对话框。 沿着主菜单的“Analyze→Data Reduction→Factor”的路径(图2)打开因子分析选项框(图3)。 图2 打开因子分析对话框的路径 图3 因子分析选项框 第三步:选项设置。 首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value”栏。下面逐项设置。 图4 将变量移到变量栏以后 ⒈ 设置Descriptives选项。 单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。 图5 描述选项框 在Statistics栏中选中Univariate descriptives复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。 在Correlation Matrix栏中,选中Coefficients复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant复选项,则会给出相关系数矩阵的行列式,如果希望在Excel中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。 设置完成以后,单击Continue按钮完成设置(图5)。 ⒉ 设置Extraction选项。 打开Extraction对话框(图6)。因子提取方法主要有7种,在Method栏中可以看到,系统默认的提取方法是主成分(????????????????????),因此对此栏不作变动,就是认可了主成分分析方法。 在Analyze栏中,选中Correlation matirx复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。 在Display栏中,选中Unrotated factor solution(非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。 选中Scree Plot(“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。 在Extract栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(Eigenvalues)的数值,系统默认的是。我们知道,在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认,则所有方差大于等于1的主成分将被保留,其余舍弃。如果觉得最后选取的主成分数量不足,可以将值降低,例如取;如果认为最后的提取的主成分数量偏多,则可以提高值,例如取。主成分数目是否合适,要在进行一轮分析以后才能肯定。因此,特征根数值的设定,要在反复试验以后才能决定。一般而言,在初次分析时,最好降低特征根的临界值(如取) ,这样提取的主成分将会偏多,根据初次分析的结果,在第二轮分析过程中可以调整特征根的大小。 第二种方法是直接指定主成分的数目即因子数目,这要选中Number of factors复选项。主成分的数目选多少合适?开始我们并不十分清楚。因此,首次不妨将数值设大一些,但不能超过变量数目。本例有8个变量,因此,最大的主成分提取数目为8,不得超过此数。在我们第一轮分析中,采用系统默认的方法提取主成分。 图6 提取对话框 需要注意的是:主成分计算是利用迭代(Iterations)方法,系统默认的迭代次数是25次。但是,当数据量较大时,25次迭代是不够的,需要改为50次、100次乃至更多。对于本例而言,变量较少,25次迭代足够,故无需改动。 设置完成以后,单击Continue按钮完成设置(图6)。 ⒊ 设置Scores设置。 选中Save as variables栏,则分析结果中给出标准化的主成分得分(在数据表的后面)。至于方法复选项,对主成分分析而言,三种方法没有分别,采用系统默认的“回归”(Regression)法即可。 图7 因子得分对话框 选中Display factor score coefficient matrix,则在分析结果中给出因子得分系

文档评论(0)

sa1fs5g1xc1I + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档