高分子材料的电学性能[精选].doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
高分子材料的电学性能[精选]

高分子材料的电学性能 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 种类繁多的高分子材料的电学性能是丰富多彩的。就导电性而言,高分子材料可以是绝缘体、半导体、导体和超导体。多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。另一方面,导电高分子的研究和应用近年来取得突飞猛进的发展。以MacDiarmid、Heeger、白川英树等人为代表高分子科学家发现,一大批分子链具有共轭π-电子结构的聚合物,如聚乙炔、聚噻吩、聚吡咯、聚苯胺等,通过不同的方式掺杂,可以具有半导体(电导率σ=10-10-102 S?cm-1)甚至导体(σ=102-106 S?cm-1)的电导率。通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、乳液聚合、化学复合等方法人们又克服了导电高分子不溶不熔的缺点,获得可溶性或水分散性导电高分子,大大改善了加工性,使导电高分子进入实用领域。白川英树等人因其开创性和富有成效的工作获得2000年度诺贝尔化学奖。 研究聚合物电学性能的另一缘由是因为聚合物的电学性质非常灵敏地反映材料内部的结构特征和分子运动状况,因此如同力学性质的测量一样,电学性质的测量也成为研究聚合物结构与分子运动的一种有效手段。 一、聚合物的极化和介电性能 (一)聚合物电介质在外电场中的极化 在外电场作用下,电介质分子中电荷分布发生变化,使材料出现宏观偶极矩,这种现象称电介质的极化。极化方式有两种:感应极化和取向极化。根据分子本身是否具有永久偶极矩,物质分子可分为极性分子和非极性分子两大类,其极化方式不同。 非极性分子本身无偶极矩,在外电场作用下,原子内部价电子云相对于原子核发生位移,使正负电荷中心分离,分子带上偶极矩;或者在外电场作用下,电负性不同的原子之间发生相对位移,使分子带上偶极矩。这种极化称感应极化,又称诱导极化或变形极化。其中由价电子云位移引起的极化称电子极化;由原子间发生相对位移引起的极化称原子极化。原子极化比电子极化弱得多,极化过程所需的时间略长。 感应极化产生的偶极矩为感应偶极矩,对各向同性介质,与外电场强度成正比: (4-127) 式中,α1称感应极化率,αe 和αa分别为电子极化率和原子极化率。αe 和αa的值不随温度而变化,仅取决于分子中电子云和原子的分布情况。电子极化和原子极化在所有电介质中(包括极性介质和非极性介质)都存在。 极性分子本身具有永久偶极矩,通常状态下由于分子的热运动,各偶极矩的指向杂乱无章,因此宏观平均偶极矩几乎为零。当有外电场时,极性分子除发生电子极化和原子极化外,其偶极子还会沿电场方向发生转动、排列,产生分子取向,表现出宏观偶极矩。这种现象称取向极化或偶极极化(图4-71)。 图4-71 极性分子的取向极化 取向极化产生偶极矩的大小取决于偶极子的取向程度,研究表明,取向偶极矩与极性分子永久偶极矩的平方成正比,与外电场强度成正比,与绝对温度成反比。即 (4-128) 式中α2称取向极化率,k为波尔兹曼常数。由于极性分子永久偶极矩远大于感应偶极矩,故取向偶极矩大于感应偶极矩。 极性分子沿电场方向转动、排列时,需要克服本身的惯性和旋转阻力,所以完成取向极化过程所需时间比电子极化和原子极化长。尤其对大分子,其取向极化可以是不同运动单元的取向,包括小侧基、链段或分子整链,因此完成取向极化所需时间范围也很宽。取向极化时因需克服分子间相互作用力,因此也消耗部分能量。 以上讨论单个分子产生的偶极矩,对各向同性介质,若单位体积含n0个分子,每个分子产生的平均偶极矩为,则单位体积内的偶极矩P为 (4-129) P称介质极化率,为分子极化率。对非极性介质,;对极性介质,。 除上述三种极化外,还有一种产生于非均相介质界面处的界面极化。由于界面两边的组分可能具有不同的极性或电导率,在电场作用下将引起电荷在两相界面处聚集,从而产生极化。共混、填充聚合物体系以及泡沫聚合物体系有时会发生界面极化。对均质聚合物,在其内部的杂质、缺陷或晶区、非晶区界面上,都有可能产生界面极化。 (二)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作用下发生极化引起的,通常用介电系数ε和介电损耗表示。 1、介电

文档评论(0)

jsntrgzxy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档