网站大量收购独家精品文档,联系QQ:2885784924

数学建模方法大全..doc

  1. 1、本文档共76页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数学建模方法大全.

数学建模方法大全 二○一二年九月九日星期日 9时59分32秒 目录 一、主成分分析法 2 二、因子分析法 5 三、聚类分析 9 四、最小二乘法与多项式拟合 16 五、回归分析(略) 22 六、概率分布方法(略) 22 七、插值与拟合(略) 22 八、方差分析法 23 九、逼近理想点排序法 28 十、动态加权法 29 十一、灰色关联分析法 31 十二、灰色预测法 33 十三、模糊综合评价 35 十四、隶属函数的刻画(略) 37 十五、时间序列分析法 38 十六、蒙特卡罗(MC)仿真模型 42 十七、BP神经网络方法 44 十八、数据包络分析法(DEA) 51 十九、多因素方差分析法()基于SPSS) 54 二十、拉格朗日插值 70 二十一、回归分析(略) 75 二十二、概率分布方法(略) 75 二十三、插值与拟合(略) 75 二十四、隶属函数的刻画(参考《数学建模及其方法应用》) 75 二十五、0-1整数规划模型(参看书籍) 75 二十六、Board评价法(略) 75 二十七、纳什均衡(参看书籍) 75 二十八、微分方程方法与差分方程方法(参看书籍) 75 二十九、莱斯利离散人口模型(参看数据) 75 三十、一次指数平滑预测法(主要是软件的使用) 75 三十一、二次曲线回归方程(主要是软件的使用) 75 三十二、成本-效用分析(略) 75 三十三、逐步回归法(主要是软件的使用) 75 三十四、双因子方差分析(略) 75 一、主成分分析法 一)、主成分分析法介绍: 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法旨在利用降维的思想,把多指标转化为少数几个综合指标。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 为第 j个指标对应于第 个主成分的初始因子载荷, 为第 l个主成分对应的特征值 根据主成分表达式得出综合得分模型: 四)、主成分分析法的基本原理: 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。概括起来说,主成分分析主要由以下几个方面的作用。 1.主成分分析能降低所研究的数据空间的维数。即用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替 高维的x空间所损失的信息很少。即:使只有一个主成分Yl(即 m=1)时,这个Yl仍是使用全部X变量(p个)得到的。例如要计算Yl的均值也得使用全部x的均值。在所选的前m个主成分中,如果某个Xi的系数全部近似于零的话,就可以把这个Xi删除,这也是一种删除多余变量的方法。 2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。 3.多维数据的一种图形表示方法。我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来是不可能的。然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地看出各样品在主分量中的地位,进而还可以对样本进行分类处理,可以由图形发现远离大多数样本点的离群点。 4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。 5.用主成分分析筛选回归变量。回归变量的选择有着重的实际意义,为了使模型本身易于做结构分析、控制和预报,好从原始变量所构成的子集合中选择最佳变量,构成最佳变量集合。用主成

您可能关注的文档

文档评论(0)

s4as2gs2cI + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档