- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(计量经济学习题与解答3
第四章 经典单方程计量经济学模型:放宽基本假定的模型
一、内容提要
本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。
异方差是模型随机扰动项的方差不同时产生的一类现象。在异方差存在的情况下,OLS估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。
序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。模型的多个解释变量间出现完全共线性时,模型的参数无法估计。更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。
当模型中的解释变量是随机解释变量时,需要区分三种类型:随机解释变量与随机扰动项独立,随机解释变量与随机扰动项同期无关、但异期相关,随机解释变量与随机扰动项同期相关。第一种类型不会对OLS估计带来任何问题。第二种类型则往往导致模型估计的有偏性,但随着样本容量的增大,偏误会逐渐减小,因而具有一致性。所以,扩大样本容量是克服偏误的有效途径。第三种类型的OLS估计则既是有偏、也是非一致的,需要采用工具变量法来加以克服。
二、典型例题分析
1、下列哪种情况是异方差性造成的结果?
(1)OLS估计量是有偏的
(2)通常的t检验不再服从t分布。
(3)OLS估计量不再具有最佳线性无偏性。
解答:
第(2)与(3)种情况可能由于异方差性造成。异方差性并不会引起OLS估计量出现偏误。
2、已知模型
式中,Y、X1、X2和Z的数据已知。假设给定权数,加权最小二乘法就是求下式中的各β,以使的该式最小
(1)求RSS对?1、?2和?2的偏微分并写出正规方程。
(2)用Z去除原模型,写出所得新模型的正规方程组。
(3)把带入(1)中的正规方程,并证明它们和在(2)中推导的结果一样。
解答:
(1)由对各β求偏导得如下正规方程组:
(2)用Z去除原模型,得如下新模型
对应的正规方程组如下所示:
(3)如果用代替(1)中的,则容易看到与(2)中的正规方程组是一样的。
3、已知模型
式中,为某公司在第i个地区的销售额;为该地区的总收入;为该公司在该地区投入的广告费用(i=0,1,2……,50)可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项ui是异方差的。假设依赖于总体的容量,请逐步描述你如何对此进行检验。需说明:1)零假设和备择假设;2)要进行的回归;3)要计算的检验统计值及它的分布(包括自由度);4)接受或拒绝零假设的标准。
(2)假设。逐步描述如何求得BLUE并给出理论依据。
解答:
(1)如果依赖于总体的容量,则随机扰动项的方差依赖于。因此,要进行的回归的一种形式为。于是,要检验的零假设H0:,备择假设H1:。检验步骤如下:
第一步:使用OLS方法估计模型,并保存残差平方项;
第二步:做对常数项C和的回归
第三步:考察估计的参数的t统计量,它在零假设下服从自由度为2的t分布。
第四步:给定显著性水平面0.05(或其他),查相应的自由度为2的t分布的临界值,如果估计的参数的t统计值大于该临界值,则拒绝同方差的零假设。
(2)假设时,模型
文档评论(0)