AutomaticSegmentationofNeonatalBrainMRI-theUNC.pptVIP

AutomaticSegmentationofNeonatalBrainMRI-theUNC.ppt

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
AutomaticSegmentationofNeonatalBrainMRI-theUNC

Automatic Segmentation of Neonatal Brain MRI Marcel Prastawa1, John Gilmore2, Weili Lin3, Guido Gerig1,2 University of North Carolina at Chapel Hill 1Department of Computer Science 2Department of Psychiatry 3Department of Radiology Partially supported by NIH Conte Center MH064065 and NIH-NIBIB R01 EB000219 Goal Segmentation of brain tissues of newborn infants from multimodal MRI Particular interest in the developing white matter structure Motivation: Analysis of growth patterns, study of neuro-developmental disorders starting at a very early age Imaging the Developing Brain Challenges Smaller head size Low contrast-to-noise ratio Intensity inhomogeneity Motion artifacts Division of white matter into myelinated and non-myelinated regions Previous work: Warfield et al 1998 (methodology) Hüppi et al 1998 (clinical study) Challenges Approach Non-optimal input data, rely on high level prior knowledge Intensity ordering (e.g. in T2W) wm-myelinated gm wm-non-myelinated csf Aligned spatial priors (brain atlas) White matter is considered as one entity Method Overview Intensity Clustering Samples obtained by thresholding atlas priors T1 T2 Pr(wm, x) Overlay Noisy data, low contrast ? robust techniques Two robust estimation techniques: Minimum Spanning Tree (MST) clustering Minimum Covariance Determinant (MCD) estimator Obtain initial estimates of intensity distributions Minimum Spanning Tree Clustering [Cocosco et al 2003] Break long edges in MST, example: Detect multiple clusters while pruning outliers Iterative process, stops when cluster feature locations are in the desired order “Feature location” = summary value of cluster intensities Determining Feature Locations Need reliable location estimate to find good clusters Standard estimates (e.g., mean, median) not always optimal Use robust estimator to determine location of a compact point set in a cluster Minimum Covariance Determinant [Rousseeuw et al

文档评论(0)

teda + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档