计量经济学模型对数据的依赖性..doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
计量经济学模型对数据的依赖性.

计量经济学模型对数据的依赖性 李子奈 【内容提要】 伴随着计量经济学模型方法的广泛应用,错误也屡屡发生,重要原因之一是没有正确理解模型对数据的依赖性。本文从计量经济学模型类型选择、总体回归模型设定、模型估计和模型应用等方面分析了数据的作用,指出了容易出现的错误和产生错误的原因。 【关 键 词】计量经济学模型/模型类型选择/总体回归模型设定/数据依赖性 一、引言 在我国,计量经济学模型在经济理论研究和经济问题分析中已经被广泛采用,成为一种主流的实证研究方法。在一些社会问题的研究中,采用计量经济学模型方法也已经成为一种趋势。同时,模型对数据的依赖性愈发突出,数据的数量和质量成为计量经济学应用研究的一个重要制约因素。 计量经济学的创始人弗里希(R. Frisch)为计量经济学下了如下定义:“经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。三者结合起来,就是力量,这种结合便构成了计量经济学。”1984年诺贝尔经济学奖授予著名的统计学家斯通(Richard Stone)是因为他“在发展国民核算体系方面做出了基础性贡献,并因此极大地改善了经验经济分析(即计量经济分析)的基础”。2000年获得诺贝尔经济学奖的赫克曼(J. Heckman)和麦克法登(D. McFaddan)的贡献是发展了微观计量经济学模型的理论方法,在瑞典皇家科学院发布的新闻公报中着重指出,他们“已经解决了对微观数据进行统计分析中出现的基本问题”。创立动态计量经济学的亨德里(David Hendry)认为,计量经济分析的过程就是发现客观的数据生成过程的过程。这些足以说明,计量经济学与统计学密不可分,统计学的发展催生了计量经济学,计量经济学的发展带动了统计学。具体表现于计量经济学模型和数据之间的紧密联系。 在计量经济学模型的应用研究中,经常有人提出类似于“鸡生蛋还是蛋生鸡”的问题,即究竟是根据数据设定模型,还是根据模型选择数据?不同的是,鸡与蛋的关系问题是没有答案的,而模型与数据的关系问题是有答案的。计量经济学应用研究中模型与数据之间的关系可以用图1表示。图中①表示计量经济学应用模型的类型依赖于表征研究对象状态的数据类型,不同类型的数据,必须选择不同类型的模型。在模型类型确定之后,依据对研究对象的系统动力学关系的分析,设定总体模型。在这个过程中,必须对在经济理论指导下所分析的系统动力学关系进行统计必要性检验,如图中②所示。当总体模型被正确设定后,接下来的任务是进行模型参数的估计,毫无疑问,模型估计必须得到样本数据的支持,模型估计结果依赖于样本数据的质量,即为图中③所示。模型经过估计和检验后进入应用,根据应用目的的不同,需要不同的数据支持,例如用于预测,必须首先给出预测期的外生变量的数据,这就是图中④所表示的步骤。 图1 模型与数据之间的关系图 计量经济学模型对数据的依赖性的一个人所共知的例子是关于我国广义技术进步对经济增长的贡献的测算。国内外许多学者进行了经验研究,结果差异极大,技术进步对GDP增长的贡献率,最低的估计为0,最高估计达到40%。甚至所建立的模型都是C-D型总量生产函数模型,选择的投入要素都是资本和劳动,甚至选择的样本区间也是相同的,数据都来自于中国统计年鉴,仍然会得到不同的结论。为什么?关键是不同的研究者对资本投入的数据或者未进行任何处理,或者进行了不同方式的处理,以消除价格因素的影响。请注意,在统计中,固定资产原值(或者净值)数据是以资产形成年的价格计量的资产简单相加得到的。 最近几年,我们对农户借贷需求进行了较为广泛的调查,采集了青海、新疆、甘肃、河北、黑龙江、吉林、山西、湖南、湖北、河南、安徽、江西、陕西、山东、辽宁、内蒙古等16省区的72个县、440多个村庄的5100家农户的数据。其中,在一年中发生借贷行为的农户占55.3%(包括向亲友借贷),为2820户,其余2280户没有发生借贷。对于这一宝贵的数据资源,当然要充分利用。于是,为了对农户借贷行为进行因素分析,不同的研究者建立了不同的计量经济学模型。有人利用2820户发生借贷的农户的借贷额为被解释变量,建立经典的回归模型;有人认为应该将没有发生借贷的农户信息加以利用,其借贷额为0,于是利用5100农户为样本,建立经典的回归模型;有人认为不应该将没有发生借贷的农户的借贷额统统视为0,而应该视为小于等于0(≤0),于是利用5100农户为样本,建立了归并(censoring)数据模型(Tobit模型)。有人认为不应该将没有发生借贷的农户的借贷额统统视为小于等于0,因为其中一部分农户有借贷需求,只是因为各种原因(例如提出借贷被拒绝,担心借不到而不敢提出借贷要求等)而没有发生

文档评论(0)

s4as2gs2cI + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档