- 1、本文档共78页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
第 6 章 相关与回归分析 6.1 变量间关系的度量 6.2 一元线性回归 学习目标 相关关系的分析 参数的最小二乘估计 回归直线的拟合优度 回归方程的显著性检验 利用回归方程进行预测 用 Excel 进行回归 子代与父代一样吗? Galton(高尔顿 )被誉为现代回归和相关技术的创始人。1875年,Galton利用豌豆实验来确定尺寸的遗传规律。他挑选了7组不同尺寸的豌豆,并说服他在英国不同地区的朋友每一组种植10粒种子,最后把原始的豌豆种子(父代)与新长的豌豆种子(子代)进行尺寸比较 当结果被绘制出来之后,他发现并非每一个子代都与父代一样,不同的是,尺寸小的豌豆会得到更大的子代,而尺寸大的豌豆却得到较小的子代。 子代与父代一样吗?[2] Galton把这一现象叫做“返祖”(趋向于祖先的某种平均类型),后来又称之为“向平均回归”。 一个总体中,在某一时期具有某一极端特征(低于或高于总体均值)的个体,在未来的某一时期,将减弱它的极端性 (或者是单个个体或者是整个子代),这一趋势现在被称作“回归效应”。 人们发现它的应用很广,而不仅限于从一代到下一代豌豆大小问题 子代与父代一样吗?[3] 正如Galton进一步发现的那样,平均来说,非常矮小的父辈倾向于有偏高的子代;而非常高大的父辈则倾向于有偏矮的子代。在第一次考试中成绩最差的那些学生在第二次考试中倾向于有更好的成绩(比较接近所有学生的平均成绩),而第一次考试中成绩最好的那些学生在第二次考试中则倾向于有较差的成绩(同样比较接近所有学生的平均成绩)。同样,平均来说,第一年利润最低的公司第二年不会最差,而第一年利润最高的公司第二年则不会是最好的 子代与父代一样吗?[4] 如果把父代和子代看作两个变量,找出这两个变量的关系,并根据这种关系建立适当的数学模型,就可以根据父代的数值预测子代的取值,这就是经典的回归方法要解决的问题。 学完本章的内容你会对回归问题有更深入的理解 回归分析研究什么? [1] 研究某些实际问题时往往涉及到多个变量。 这些变量中,有一个变量是研究中特别关注的,称为因变量,而其他变量则看成是影响这一变量的因素,称为自变量 假定因变量与自变量之间有某种关系,并把这种关系用适当的数学模型表达出来,那么,这就是回归要解决的问题 回归分析研究什么? [1] 就可以利用这一模型根据给定的自变量来预测因变量。 在回归分析中,只涉及一个自变量时称为一元回归,涉及多个自变量时则称为多元回归。 如果因变量与自变量之间是线性关系,则称为线性回归(linear regression);如果因变量与自变量之间是非线性关系则称为非线性回归(nonlinear regression) 6.1.1 变量间的关系 1、函数关系 是一一对应的确定关系 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 各观测点落在一条线上 2、相关关系(correlation) 一个变量的取值不能由另一个变量唯一确定 当变量 x 取某个值时,变量 y 的取值对应着一个分布 各观测点分布在直线周围 相关关系(几个例子) 子女的身高与其父母身高的关系 从遗传学角度看,父母身高较高时,其子女的身高一般也比较高。但实际情况并不完全是这样,因为子女的身高并不完全是由父母身高一个因素所决定的,还有其他许多因素的影响 一个人的收入水平同他受教育程度的关系 收入水平相同的人,他们受教育的程度也不可能不同,而受教育程度相同的人,他们的收入水平也往往不同。因为收入水平虽然与受教育程度有关系,但它并不是决定收入的惟一因素,还有职业、工作年限等诸多因素的影响 农作物的单位面积产量与降雨量之间的关系 在一定条件下,降雨量越多,单位面积产量就越高。但产量并不是由降雨量一个因素决定的,还有施肥量、温度、管理水平等其他许多因素的影响 6.1.2 相关关系的描述与测度 1、散点图(scatter diagram) 1、用散点图描述变量间的关系(例题分析) 【例6.6】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的提高,这给银行业务的发展带来较大压力。为弄清楚不良贷款形成的原因,希望利用银行业务的有关数据做些定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据 散点图(例题分析) 2、相关系数(correlation coefficient) 相关系数:度量变量之间线性关系强
文档评论(0)