网站大量收购独家精品文档,联系QQ:2885784924

(IGBT模块的等效热路模型.docxVIP

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(IGBT模块的等效热路模型

IGBT模块的等效热路模型引言半导体器件的热特性可以使用不同的等效热路模型来描述:?图 1: 连续网络热路模型 (Continued fraction circuit,也称作Cauer模型, T模型或梯形网络)连续网络热路模型(Continued fraction circuit)反应了带有内部热阻的半导体器件的热容量真实的物理传导过程。当已知器件的每层的材料特性时,就能够建立这个模型。然而,要画出 每层材料上的热路图是十分麻烦的。模块的每一层(芯片、芯片的连接部、基片、基片连接部、底板)都可以用相应独立的RC单元来表示。因此从热路模型的各网络节点就能够获得每层材料的内部温度。图 2: 局部网络热路模型 (Partial fraction circuit,也称作Foster模型或pi模型)与连续网络热路模型不同,局部网络热路模型(Partial fraction circuit)的RC部分不再与各材料层对应。网络节点没有任何物理意义。本应用手册是用该模型,因为系数很容易从已测得的散热曲线中得到,因此该模型往往用于解析计算模块的温度分布。在本应用手册中,局部网络热路模型中的系数是用如表格中的r和一起表示的。这里举一个例子:图 3: 局部网络热路模型中含输入功率P(t), 壳温Tcase 和IGBT 的仿真模型在实际应用中,基板和散热片的温度不是总能简化假设为恒定值,因为与散热片的时间常数相比,负载周期的时间不是短到可以忽略的。对于非固定的工作环境,要对Tcase(t )进行测量或者将IGBT模型与散热片模型连接。考虑导热胶在以上两种网络热路模型中,在评估最恶劣情况下的温度时是用导热胶Rt h 替代常常是未知的导热胶Zt h。然而,在局部网络热路模型中,当一个阶跃的功率输入到IGBT中时将导致通过导热胶的温度随即上升,并因此将导致实际器件中不存在的结温升高。有两种方法可以避开这个问题:1) 如果散热片的Zth 可以通过测量得到,应当用基板的温度Tcase来代替散热片的温度Ths。在这种情况下,导热胶已经包含在散热片的温度测量中,这样就不必再单独分开考虑。2) 如果IGBT已经搭建,因已知输入功率损耗P(t),则基板的温度Tcase(t)可以直接测量得到,从而根据图3计算得到。IGBT加散热片用局部网络热路模型或连续网络热路模型?用户经常会想避免测量的花费,而想利用目前已有的IGBT和散热片热参数画热路模型图。连续网络热路模型和局部网络热路模型都提供描述了IGBT的结到壳与散热片到周围环境的热传递过程。如果要将IGBT和散热片的模型合并在一起,就会出现要用哪个模型的问题,特别是如果IGBT与散热片的热特性是分别独立给出的。连续网络热路模型中的IGBT 和散热片:图 4: 综合的连续网络热路模型连续网络热路模型和模型中相连接的各材料层的模型使得热传递过程物理意义清晰,即各材料层是逐层传递热量的。热量流动—类比于电路中的电流—经过一段时间延迟后到达并加热散热片。连续网络热路模型可以通过仿真或者由一个测量的局部网络热路模型变换得到。通过对整个结构的每一层材料分析和有限元建模仿真,很明显可以建立一个模型。但这只有在包含了某一特定的散热片时才是可能的,因为散热片对IGBT里热量的传递有着相互耦合作用的影响,因此也对热响应时间和IGBT的Rthjc有影响。如果实际中的散热片与仿真中用的散热片不一样,那么就不能通过仿真来对实际的散热片进行建模。在数据手册中一般会给出局部网络热路模型的参数,因为这是基于测量得到的结果,以及提供的Zthjc可作为近似的数据用。将局部网络热路模型变换为连续网络热路模型是有可能的。在这个变换中,对于一个Rth/C比值会存在很多对不同的Rth和C取值,且变换后新的连续网络热路模型中的RC值和节点都没有明确的物理意义了。一个变换后得到的不能与其它连续网络热路模型对应起来的连续网络热路模型会带来各种错误。局部网络热路模型中的IGBT和散热片数据手册里给出的IGBT的局部网络热路模型是根据采用某一特定散热片散热时测量得到的。对于风冷的散热片,由于模块中的热流分布广泛,因此在测量时有更好更低的的Rthjc。而对于水冷散热片,由于热流分布受限制,因此测量时得到相对更高的Rthjc。英飞凌在数据手册中描述模块特性时,是采用基于水冷散热片的局部网络热路模型,即采用相对比较不利的散热工作情况来描述模块热特性的,因此采用这样热特性时模块有更高安全系数。图 5: 合并的局部网络热路模型由于IGBT和散热片的两个热路网络串联,因此注入PN结的功率—类比于电路中的电流—没有延时的立即传到散热片。因此结温的上升依赖于先前的散热片的种类,实际上是依赖模块的热容量。然而,风冷系统中散热片的时间常数从几十到几百秒,这远远大于IGBT本身的大约为1s的时间

文档评论(0)

yyf7373 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档